iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1145/3617232.3624855
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T23:28:30Z","timestamp":1725751710280},"publisher-location":"New York, NY, USA","reference-count":99,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,4,27]]},"DOI":"10.1145\/3617232.3624855","type":"proceedings-article","created":{"date-parts":[[2024,4,17]],"date-time":"2024-04-17T20:10:56Z","timestamp":1713384656000},"page":"197-214","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["GPU-based Private Information Retrieval for On-Device Machine Learning Inference"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4798-3940","authenticated-orcid":false,"given":"Maximilian","family":"Lam","sequence":"first","affiliation":[{"name":"Harvard University, Boston, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2743-0521","authenticated-orcid":false,"given":"Jeff","family":"Johnson","sequence":"additional","affiliation":[{"name":"Meta, Menlo Park, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7626-2651","authenticated-orcid":false,"given":"Wenjie","family":"Xiong","sequence":"additional","affiliation":[{"name":"Virginia Tech, Blacksburg, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0321-8406","authenticated-orcid":false,"given":"Kiwan","family":"Maeng","sequence":"additional","affiliation":[{"name":"Pennsylvania State University, State College, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9118-0961","authenticated-orcid":false,"given":"Udit","family":"Gupta","sequence":"additional","affiliation":[{"name":"Harvard University, Ithaca, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9052-9308","authenticated-orcid":false,"given":"Yang","family":"Li","sequence":"additional","affiliation":[{"name":"Meta, Menlo Park, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6421-5164","authenticated-orcid":false,"given":"Liangzhen","family":"Lai","sequence":"additional","affiliation":[{"name":"Meta, Menlo Park, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5581-5803","authenticated-orcid":false,"given":"Ilias","family":"Leontiadis","sequence":"additional","affiliation":[{"name":"Meta, United Kingdom, United Kingdom"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3303-8681","authenticated-orcid":false,"given":"Minsoo","family":"Rhu","sequence":"additional","affiliation":[{"name":"KAIST \/ Meta, Seoul, Korea, South ? Republic of Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8926-8243","authenticated-orcid":false,"given":"Hsien-Hsin S.","family":"Lee","sequence":"additional","affiliation":[{"name":"Intel, San Jose, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5259-7721","authenticated-orcid":false,"given":"Vijay Janapa","family":"Reddi","sequence":"additional","affiliation":[{"name":"Harvard University, Boston, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5730-9904","authenticated-orcid":false,"given":"Gu-Yeon","family":"Wei","sequence":"additional","affiliation":[{"name":"Harvard University, Boston, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0662-7889","authenticated-orcid":false,"given":"David","family":"Brooks","sequence":"additional","affiliation":[{"name":"Harvard University, boston, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6409-9888","authenticated-orcid":false,"given":"Edward","family":"Suh","sequence":"additional","affiliation":[{"name":"Meta AI \/ Cornell University, Boston, United States of America"}]}],"member":"320","published-online":{"date-parts":[[2024,4,17]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"4G network throughput. https:\/\/en.wikipedia.org\/wiki\/4G."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA56546.2023.10070953"},{"volume-title":"15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21)","year":"2021","author":"Ahmad I.","key":"e_1_3_2_1_3_1","unstructured":"Ahmad, I., Yang, Y., Agrawal, D., Abbadi, A. E., and Gupta, T. Addra: Metadata-private voice communication over fully untrusted infrastructure. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21) (2021)."},{"volume-title":"30th USENIX Security Symposium (USENIX Security 21)","year":"2021","author":"Ali A.","key":"e_1_3_2_1_4_1","unstructured":"Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth, K., and Yeo, K. Communication-Computation trade-offs in PIR. In 30th USENIX Security Symposium (USENIX Security 21) (2021)."},{"key":"e_1_3_2_1_5_1","unstructured":"Amazon MPC using enclaves. https:\/\/d1.awsstatic.com\/events\/Summits\/reinvent2022\/CMP403_Enabling-multi-party-analysis-of-sensitive-data-using-AWS-Nitro-Enclaves-.pdf."},{"key":"e_1_3_2_1_6_1","unstructured":"Amazon on device speech recognition. https:\/\/www.amazon.science\/blog\/how-to-make-on-device-speech-recognition-practical."},{"key":"e_1_3_2_1_7_1","unstructured":"AMD SEV. https:\/\/developer.amd.com\/sev\/."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2018.00062"},{"key":"e_1_3_2_1_9_1","unstructured":"Apple app tracking transparency. https:\/\/developer.apple.com\/documentation\/apptrackingtransparency."},{"key":"e_1_3_2_1_10_1","unstructured":"ARM trustzone. https:\/\/www.arm.com\/technologies\/trustzone-for-cortex-a."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-46803-6_12"},{"volume-title":"Paper 2019\/1095","year":"2019","author":"Boyle E.","key":"e_1_3_2_1_12_1","unstructured":"Boyle, E., Gilboa, N., and Ishai, Y. Secure computation with preprocessing via function secret sharing. Cryptology ePrint Archive, Paper 2019\/1095, 2019."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA51647.2021.00012"},{"volume-title":"Paper 2023\/437","year":"2023","author":"Case B.","key":"e_1_3_2_1_14_1","unstructured":"Case, B., Jain, R., Koshelev, A., Leiserson, A., Masny, D., Sandberg, T., Savage, B., Taubeneck, E., Thomson, M., and Yamaguchi, T. Interoperable private attribution: A distributed attribution and aggregation protocol. Cryptology ePrint Archive, Paper 2023\/437, 2023."},{"key":"e_1_3_2_1_15_1","unstructured":"CCPA. https:\/\/www.oag.ca.gov\/privacy\/ccpa."},{"key":"e_1_3_2_1_16_1","unstructured":"Chacha20 in TLS. https:\/\/www.rfc-editor.org\/rfc\/rfc7905."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/SFCS.1995.492461"},{"volume-title":"Paper 2023\/297","year":"2023","author":"Colombo S.","key":"e_1_3_2_1_18_1","unstructured":"Colombo, S., Nikitin, K., Corrigan-Gibbs, H., Wu, D. J., and Ford, B. Authenticated private information retrieval. Cryptology ePrint Archive, Paper 2023\/297, 2023."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2015.27"},{"key":"e_1_3_2_1_20_1","first-page":"2022","author":"Corrigan-Gibbs H.","year":"2022","unstructured":"Corrigan-Gibbs, H., Henzinger, A., and Kogan, D. Single-server private information retrieval with sublinear amortized time. In Advances in Cryptology - EUROCRYPT 2022 (2022).","journal-title":"EUROCRYPT"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.3115\/981732.981770"},{"key":"e_1_3_2_1_22_1","unstructured":"Deep learning recommendation model. https:\/\/www.adityaagrawal.net\/blog\/dnn\/dlrm."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3133967"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1141"},{"volume-title":"TensorFHE: Achieving practical computation on encrypted data using GPGPU","year":"2022","author":"Fan S.","key":"e_1_3_2_1_25_1","unstructured":"Fan, S., Wang, Z., Xu, W., Hou, R., Meng, D., and Zhang, M. TensorFHE: Achieving practical computation on encrypted data using GPGPU, 2022. arXiv:2212.14191."},{"volume-title":"F1: A fast and programmable accelerator for fully homomorphic encryption (extended version)","year":"2021","author":"Feldmann A.","key":"e_1_3_2_1_26_1","unstructured":"Feldmann, A., Samardzic, N., Krastev, A., Devadas, S., Dreslinski, R., Eldefrawy, K., Genise, N., Peikert, C., and Sanchez, D. F1: A fast and programmable accelerator for fully homomorphic encryption (extended version), 2021. arXiv:2109.05371."},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/2694344.2694353"},{"key":"e_1_3_2_1_28_1","unstructured":"Forbes multiparty computation adoption. https:\/\/www.forbes.com\/sites\/forbestechcouncil\/2021\/10\/26\/multi-party-computation-private-inputs-public-outputs\/?sh=2e2abccd1bb0."},{"key":"e_1_3_2_1_29_1","unstructured":"GDPR. https:\/\/gdpr.eu\/what-is-gdpr\/."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/1536414.1536440"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"crossref","unstructured":"Gentry C. and Halevi S. Compressible FHE with applications to PIR. IACR Cryptol. ePrint Arch. (2019).","DOI":"10.1007\/978-3-030-36033-7_17"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-55220-5_35"},{"volume-title":"How to construct random functions. J. ACM","year":"1986","author":"Goldreich O.","key":"e_1_3_2_1_33_1","unstructured":"Goldreich, O., Goldwasser, S., and Micali, S. How to construct random functions. J. ACM (1986)."},{"volume-title":"Software protection and simulation on oblivious RAMs. J. ACM","year":"1996","author":"Goldreich O.","key":"e_1_3_2_1_34_1","unstructured":"Goldreich, O., and Ostrovsky, R. Software protection and simulation on oblivious RAMs. J. ACM (1996)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/3340531.3412700"},{"key":"e_1_3_2_1_36_1","unstructured":"Google confidential computing. https:\/\/cloud.google.com\/confidential-computing."},{"key":"e_1_3_2_1_37_1","unstructured":"Google cross to restrict cross app tracking. https:\/\/www.pcmag.com\/news\/google-to-restrict-cross-app-tracking-of-users-on-android."},{"key":"e_1_3_2_1_38_1","unstructured":"Google research distributed point function. https:\/\/github.com\/google\/distributed_point_functions."},{"key":"e_1_3_2_1_39_1","unstructured":"Google secure multiparty computation. https:\/\/security.googleblog.com\/2019\/06\/helping-organizations-do-more-without-collecting-more-data.html."},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA45697.2020.00084"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA47549.2020.00047"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"crossref","unstructured":"Harper F. M. and Konstan J. A. The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. (2015).","DOI":"10.1145\/2827872"},{"volume-title":"-J. Fel: High capacity learning for recommendation and ranking via federated ensemble learning","year":"2022","author":"Hejazinia M.","key":"e_1_3_2_1_43_1","unstructured":"Hejazinia, M., Huba, D., Leontiadis, I., Maeng, K., Malek, M., Melis, L., Mironov, I., Nasr, M., Wang, K., and Wu, C.-J. Fel: High capacity learning for recommendation and ranking via federated ensemble learning, 2022. arXiv:2206.03852."},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1515\/popets-2016-0036"},{"volume-title":"32nd USENIX Security Symposium (USENIX Security 23)","year":"2023","author":"Henzinger A.","key":"e_1_3_2_1_45_1","unstructured":"Henzinger, A., Hong, M. M., Corrigan-Gibbs, H., Meiklejohn, S., and Vaikuntanathan, V. One server for the price of two: Simple and fast single-server private information retrieval. In 32nd USENIX Security Symposium (USENIX Security 23) (2023)."},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/3489517.3530439"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/3470496.3527418"},{"volume-title":"Paper 2013\/081","year":"2013","author":"Huang Y.","key":"e_1_3_2_1_48_1","unstructured":"Huang, Y., Katz, J., and Evans, D. Efficient secure two-party computation using symmetric cut-and-choose. Cryptology ePrint Archive, Paper 2013\/081, 2013."},{"key":"e_1_3_2_1_49_1","unstructured":"Intel SGX. https:\/\/www.intel.com\/content\/www\/us\/en\/developer\/tools\/software-guard-extensions\/overview.html."},{"key":"e_1_3_2_1_50_1","unstructured":"Interoperable private attribution. https:\/\/github.com\/patcg-individual-drafts\/ipa\/."},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1145\/1007352.1007396"},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1145\/3579371.3589350"},{"volume-title":"27th USENIX Security Symposium (USENIX Security 18)","year":"2018","author":"Juvekar C.","key":"e_1_3_2_1_53_1","unstructured":"Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A. GAZELLE: A low latency framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX Security 18) (2018)."},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1145\/3579371.3589053"},{"key":"e_1_3_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.1145\/3470496.3527415"},{"volume-title":"Neural Information Processing Systems","year":"2021","author":"Knott B.","key":"e_1_3_2_1_56_1","unstructured":"Knott, B., Venkataraman, S., Hannun, A. Y., Sengupta, S., Ibrahim, M., and van der Maaten, L. CrypTen: Secure multi-party computation meets machine learning. In Neural Information Processing Systems (2021)."},{"key":"e_1_3_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP40000.2020.00092"},{"key":"e_1_3_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/3445814.3446717"},{"key":"e_1_3_2_1_59_1","doi-asserted-by":"publisher","DOI":"10.1145\/3470496.3527433"},{"key":"e_1_3_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1145\/3470496.3527425"},{"volume-title":"Paper 2022\/368","year":"2022","author":"Menon S. J.","key":"e_1_3_2_1_61_1","unstructured":"Menon, S. J., and Wu, D. J. Spiral: Fast, high-rate single-server PIR via FHE composition. Cryptology ePrint Archive, Paper 2022\/368, 2022."},{"volume-title":"International Conference on Learning Representations","year":"2017","author":"Merity S.","key":"e_1_3_2_1_62_1","unstructured":"Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer sentinel mixture models. In International Conference on Learning Representations (2017)."},{"volume-title":"Paper 2022\/480","year":"2022","author":"Mert A. C.","key":"e_1_3_2_1_63_1","unstructured":"Mert, A. C., Aikata, Kwon, S., Shin, Y., Yoo, D., Lee, Y., and Roy, S. S. Medha: Microcoded hardware accelerator for computing on encrypted data. Cryptology ePrint Archive, Paper 2022\/480, 2022."},{"key":"e_1_3_2_1_64_1","unstructured":"Meta multi-party computation. https:\/\/privacytech.fb.com\/multi-party-computation\/."},{"key":"e_1_3_2_1_65_1","unstructured":"Meta privacy enhancing technologies. https:\/\/www.facebook.com\/business\/news\/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies."},{"key":"e_1_3_2_1_66_1","unstructured":"Microsoft Azure confidential computing. https:\/\/learn.microsoft.com\/en-us\/azure\/architecture\/example-scenario\/confidential\/healthcare-inference."},{"volume-title":"29th USENIX Security Symposium (USENIX Security 20)","year":"2020","author":"Mishra P.","key":"e_1_3_2_1_67_1","unstructured":"Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., and Popa, R. A. Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security Symposium (USENIX Security 20) (2020)."},{"key":"e_1_3_2_1_68_1","unstructured":"Mobile application average file size. https:\/\/sweetpricing.com\/blog\/index.html%3Fp=4250.html#:~:text=Average%20Android%20and%20iOS%20file%20size&text=And%20the%20average%20iOS%20app%20file%20size%20is%2034.3MB."},{"key":"e_1_3_2_1_69_1","unstructured":"MPC alliance. https:\/\/www.mpcalliance.org\/."},{"key":"e_1_3_2_1_70_1","doi-asserted-by":"publisher","DOI":"10.1145\/3470496.3533727"},{"key":"e_1_3_2_1_71_1","doi-asserted-by":"publisher","DOI":"10.1145\/3460120.3485381"},{"key":"e_1_3_2_1_72_1","unstructured":"Naumov M. Mudigere D. Shi H. M. Huang J. Sundaraman N. Park J. Wang X. Gupta U. Wu C. Azzolini A. G. Dzhulgakov D. Mallevich A. Cherniavskii I. Lu Y. Krishnamoorthi R. Yu A. Kondratenko V. Pereira S. Chen X. Chen W. Rao V. Jia B. Xiong L. and Smelyanskiy M. Deep learning recommendation model for personalization and recommendation systems. arXiv:1906.00091."},{"volume-title":"No language left behind: Scaling human-centered machine translation","year":"2022","author":"Team","key":"e_1_3_2_1_73_1","unstructured":"NLLB Team, Costa-juss\u00e0, M. R., Cross, J., \u00c7elebi, O., Elbayad, M., Heafield, K., Heffernan, K., Kalbassi, E., Lam, J., Licht, D., Maillard, J., Sun, A., Wang, S., Wenzek, G., Youngblood, A., Akula, B., Barrault, L., Gonzalez, G. M., Hansanti, P., Hoffman, J., Jarrett, S., Sadagopan, K. R., Rowe, D., Spruit, S., Tran, C., Andrews, P., Ayan, N. F., Bhosale, S., Edunov, S., Fan, A., Gao, C., Goswami, V., Guzm\u00e1n, F., Koehn, P., Mourachko, A., Ropers, C., Saleem, S., Schwenk, H., and Wang, J. No language left behind: Scaling human-centered machine translation, 2022. arXiv:2207.04672."},{"key":"e_1_3_2_1_74_1","unstructured":"NVIDIA cooperative groups. https:\/\/developer.nvidia.com\/blog\/cooperative-groups\/."},{"key":"e_1_3_2_1_75_1","doi-asserted-by":"publisher","DOI":"10.1145\/3579371.3589111"},{"key":"e_1_3_2_1_76_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA53966.2022.00034"},{"key":"e_1_3_2_1_77_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA51647.2021.00013"},{"key":"e_1_3_2_1_78_1","doi-asserted-by":"publisher","DOI":"10.1145\/2485922.2485971"},{"key":"e_1_3_2_1_79_1","doi-asserted-by":"publisher","DOI":"10.1145\/3373376.3378523"},{"volume-title":"Proceedings on Privacy Enhancing Technologies","year":"2020","author":"Ryffel T.","key":"e_1_3_2_1_80_1","unstructured":"Ryffel, T., Tholoniat, P., Pointcheval, D., and Bach, F. R. AriaNN: Low-interaction privacy-preserving deep learning via function secret sharing. Proceedings on Privacy Enhancing Technologies (2020)."},{"key":"e_1_3_2_1_81_1","doi-asserted-by":"publisher","DOI":"10.1145\/3470496.3527393"},{"key":"e_1_3_2_1_82_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP46214.2022.9833702"},{"volume-title":"How to share a secret. Commun. ACM","year":"1979","author":"Shamir A.","key":"e_1_3_2_1_83_1","unstructured":"Shamir, A. How to share a secret. Commun. ACM (1979)."},{"key":"e_1_3_2_1_84_1","doi-asserted-by":"publisher","DOI":"10.1145\/2508859.2516660"},{"key":"e_1_3_2_1_85_1","doi-asserted-by":"publisher","DOI":"10.1145\/782814.782838"},{"key":"e_1_3_2_1_86_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP40001.2021.00098"},{"key":"e_1_3_2_1_87_1","doi-asserted-by":"publisher","DOI":"10.1109\/TASLP.2022.3153257"},{"key":"e_1_3_2_1_88_1","unstructured":"Taobao ad dataset. https:\/\/www.kaggle.com\/datasets\/pavansanagapati\/ad-displayclick-data-on-taobaocom."},{"volume-title":"FALCON: Honest-majority maliciously secure framework for private deep learning","year":"2020","author":"Wagh S.","key":"e_1_3_2_1_89_1","unstructured":"Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., and Rabin, T. FALCON: Honest-majority maliciously secure framework for private deep learning, 2020. arXiv:2004.02229."},{"key":"e_1_3_2_1_90_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA.2017.9"},{"key":"e_1_3_2_1_91_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA.2018.00043"},{"key":"e_1_3_2_1_92_1","doi-asserted-by":"publisher","DOI":"10.1145\/2810103.2813634"},{"key":"e_1_3_2_1_93_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA53966.2022.00026"},{"key":"e_1_3_2_1_94_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA53966.2022.00026"},{"key":"e_1_3_2_1_95_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA56546.2023.10070984"},{"volume-title":"Proceedings of Machine Learning and Systems 2020","year":"2020","author":"Zhao W.","key":"e_1_3_2_1_96_1","unstructured":"Zhao, W., Xie, D., Jia, R., Qian, Y., Ding, R., Sun, M., and Li, P. Distributed hierarchical GPU parameter server for massive scale deep learning ads systems. In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2--4, 2020 (2020)."},{"key":"e_1_3_2_1_97_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219823"},{"key":"e_1_3_2_1_98_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA56546.2023.10071133"},{"key":"e_1_3_2_1_99_1","unstructured":"Zipf's law. https:\/\/en.wikipedia.org\/wiki\/Zipf%27s_law."}],"event":{"name":"ASPLOS '24: 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1","sponsor":["SIGARCH ACM Special Interest Group on Computer Architecture","SIGOPS ACM Special Interest Group on Operating Systems","SIGPLAN ACM Special Interest Group on Programming Languages","SIGBED ACM Special Interest Group on Embedded Systems"],"location":"La Jolla CA USA","acronym":"ASPLOS '24"},"container-title":["Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3617232.3624855","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,25]],"date-time":"2024-04-25T15:50:18Z","timestamp":1714060218000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3617232.3624855"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4,17]]},"references-count":99,"alternative-id":["10.1145\/3617232.3624855","10.1145\/3617232"],"URL":"https:\/\/doi.org\/10.1145\/3617232.3624855","relation":{},"subject":[],"published":{"date-parts":[[2024,4,17]]},"assertion":[{"value":"2024-04-17","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}