{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:29:41Z","timestamp":1730327381940,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":37,"publisher":"ACM","funder":[{"name":"Sony Research India"},{"name":"Prime Minister Research Fellowship"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,4,8]]},"DOI":"10.1145\/3605098.3635947","type":"proceedings-article","created":{"date-parts":[[2024,5,21]],"date-time":"2024-05-21T17:59:16Z","timestamp":1716314356000},"page":"910-918","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Optimizing Movie Selections: A Multi-Task, Multi-Modal Framework with Strategies for Missing Modality Challenges"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2289-6771","authenticated-orcid":false,"given":"Subham","family":"Raj","sequence":"first","affiliation":[{"name":"Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, India"}]},{"ORCID":"http:\/\/orcid.org\/0009-0007-8290-7157","authenticated-orcid":false,"given":"Pawan","family":"Agrawal","sequence":"additional","affiliation":[{"name":"Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5458-9381","authenticated-orcid":false,"given":"Sriparna","family":"Saha","sequence":"additional","affiliation":[{"name":"Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0626-7905","authenticated-orcid":false,"given":"Brijraj","family":"Singh","sequence":"additional","affiliation":[{"name":"Sony Research India, Bengaluru, Karnataka, India"}]},{"ORCID":"http:\/\/orcid.org\/0009-0009-5381-5450","authenticated-orcid":false,"given":"Niranjan","family":"Pedanekar","sequence":"additional","affiliation":[{"name":"Sony Research India, Bengaluru, Karnataka, India"}]}],"member":"320","published-online":{"date-parts":[[2024,5,21]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2023.08.196"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N19-1034"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.07.030"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.5194\/gmdd-7-1525-2014"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/SMC53654.2022.9945488"},{"key":"e_1_3_2_1_6_1","first-page":"1","article-title":"Disentangled item representation for recommender systems","volume":"12","author":"Cui Zeyu","year":"2021","unstructured":"Zeyu Cui, Feng Yu, Shu Wu, Qiang Liu, and Liang Wang. 2021. Disentangled item representation for recommender systems. ACM Transactions on Intelligent Systems and Technology (TIST) 12, 2 (2021), 1--20.","journal-title":"ACM Transactions on Intelligent Systems and Technology (TIST)"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/3204949.3208141"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.169"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.7717\/peerj.1390"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/2872427.2883037"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/963770.963772"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/MC.2009.263"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/3397271.3401080"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/3240323.3240365"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/2766462.2767755"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/3555776.3577853"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7965870"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN55064.2022.9892382"},{"volume-title":"Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.","year":"2021","author":"Radford Alec","key":"e_1_3_2_1_20_1","unstructured":"Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From Natural Language Supervision. arXiv:2103.00020 [cs.CV]"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN54540.2023.10191882"},{"volume-title":"Massively multitask networks for drug discovery. arXiv preprint arXiv:1502.02072","year":"2015","author":"Ramsundar Bharath","key":"e_1_3_2_1_22_1","unstructured":"Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, and Vijay Pande. 2015. Massively multitask networks for drug discovery. arXiv preprint arXiv:1502.02072 (2015)."},{"volume-title":"Proceedings of Sound and Music Computing","year":"2010","author":"Seyerlehner Klaus","key":"e_1_3_2_1_23_1","unstructured":"Klaus Seyerlehner, Gerhard Widmer, Markus Schedl, and Peter Knees. 2010. Automatic music tag classification based on block-level. Proceedings of Sound and Music Computing (2010)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/TASL.2013.2264673"},{"volume-title":"Learning structured output representation using deep conditional generative models. Advances in neural information processing systems 28","year":"2015","author":"Sohn Kihyuk","key":"e_1_3_2_1_25_1","unstructured":"Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning structured output representation using deep conditional generative models. Advances in neural information processing systems 28 (2015)."},{"volume-title":"Joint multimodal learning with deep generative models. arXiv preprint arXiv:1611.01891","year":"2016","author":"Suzuki Masahiro","key":"e_1_3_2_1_26_1","unstructured":"Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. 2016. Joint multimodal learning with deep generative models. arXiv preprint arXiv:1611.01891 (2016)."},{"key":"e_1_3_2_1_27_1","volume-title":"Proceedings of the machine learning in the new information age: MLnet\/ECML2000 workshop","volume":"30","author":"Meteren Robin Van","year":"2000","unstructured":"Robin Van Meteren and Maarten Van Someren. 2000. Using content-based filtering for recommendation. In Proceedings of the machine learning in the new information age: MLnet\/ECML2000 workshop, Vol. 30. 47--56."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.527"},{"volume-title":"Graph Attention Networks. International Conference on Learning Representations","year":"2018","author":"Veli\u010dkovi\u0107 Petar","key":"e_1_3_2_1_29_1","unstructured":"Petar Veli\u010dkovi\u0107, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li\u00f2, and Yoshua Bengio. 2018. Graph Attention Networks. International Conference on Learning Representations (2018)."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"crossref","unstructured":"Valentin Vielzeuf Alexis Lechervy St\u00e9phane Pateux and Fr\u00e9d\u00e9ric Jurie. 2018. CentralNet: a Multilayer Approach for Multimodal Fusion. arXiv:1808.07275 [cs.AI]","DOI":"10.1007\/978-3-030-11024-6_44"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/3331184.3331267"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3394171.3413556"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3343031.3351034"},{"volume-title":"Multimodal generative models for scalable weakly-supervised learning. Advances in Neural Information Processing Systems 31","year":"2018","author":"Wu Mike","key":"e_1_3_2_1_34_1","unstructured":"Mike Wu and Noah Goodman. 2018. Multimodal generative models for scalable weakly-supervised learning. Advances in Neural Information Processing Systems 31 (2018)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.3301346"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.116850"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2020.3031329"}],"event":{"name":"SAC '24: 39th ACM\/SIGAPP Symposium on Applied Computing","sponsor":["SIGAPP ACM Special Interest Group on Applied Computing"],"location":"Avila Spain","acronym":"SAC '24"},"container-title":["Proceedings of the 39th ACM\/SIGAPP Symposium on Applied Computing"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3605098.3635947","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T14:46:42Z","timestamp":1721832402000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3605098.3635947"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4,8]]},"references-count":37,"alternative-id":["10.1145\/3605098.3635947","10.1145\/3605098"],"URL":"https:\/\/doi.org\/10.1145\/3605098.3635947","relation":{},"subject":[],"published":{"date-parts":[[2024,4,8]]},"assertion":[{"value":"2024-05-21","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}