iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1145/3580305.3599264
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:22:07Z","timestamp":1730326927066,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":32,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,8,6]]},"DOI":"10.1145\/3580305.3599264","type":"proceedings-article","created":{"date-parts":[[2023,8,4]],"date-time":"2023-08-04T18:10:58Z","timestamp":1691172658000},"page":"348-357","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Below the Surface: Summarizing Event Sequences with Generalized Sequential Patterns"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6628-2192","authenticated-orcid":false,"given":"Joscha","family":"C\u00fcppers","sequence":"first","affiliation":[{"name":"CISPA Helmholtz Center for Information Security, Saarbr\u00fccken, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2310-2806","authenticated-orcid":false,"given":"Jilles","family":"Vreeken","sequence":"additional","affiliation":[{"name":"CISPA Helmholtz Center for Information Security, Saarbr\u00fccken, Germany"}]}],"member":"320","published-online":{"date-parts":[[2023,8,4]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2723724"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"crossref","unstructured":"Roel Bertens Jilles Vreeken and Arno Siebes. 2016. Keeping it Short and Simple: Summarising Complex Event Sequences with Multivariate Patterns. In KDD. Roel Bertens Jilles Vreeken and Arno Siebes. 2016. Keeping it Short and Simple: Summarising Complex Event Sequences with Multivariate Patterns. In KDD.","DOI":"10.1145\/2939672.2939761"},{"volume-title":"Squish: Efficiently Summarising Event Sequences with Rich Interleaving Patterns. In SDM. 11.","year":"2017","author":"Bhattacharyya Apratim","key":"e_1_3_2_2_3_1","unstructured":"Apratim Bhattacharyya and Jilles Vreeken . 2017 . Squish: Efficiently Summarising Event Sequences with Rich Interleaving Patterns. In SDM. 11. Apratim Bhattacharyya and Jilles Vreeken. 2017. Squish: Efficiently Summarising Event Sequences with Rich Interleaving Patterns. In SDM. 11."},{"volume-title":"Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805","year":"2018","author":"Devlin Jacob","key":"e_1_3_2_2_4_1","unstructured":"Jacob Devlin , Ming-Wei Chang , Kenton Lee , and Kristina Toutanova . 2018 . Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018). Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)."},{"key":"e_1_3_2_2_5_1","first-page":"226","article-title":"A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise","volume":"96","author":"Ester Martin","year":"1996","unstructured":"Martin Ester , Hans-Peter Kriegel , J\u00f6rg Sander , Xiaowei Xu , 1996 . A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise . In KDD , Vol. 96. 226 -- 231 . Martin Ester, Hans-Peter Kriegel, J\u00f6rg Sander, Xiaowei Xu, et al. 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In KDD, Vol. 96. 226--231.","journal-title":"KDD"},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"crossref","unstructured":"Jonas Fischer and Jilles Vreeken. 2021. Differentiable pattern set mining. In KDD. 383--392. Jonas Fischer and Jilles Vreeken. 2021. Differentiable pattern set mining. In KDD. 383--392.","DOI":"10.1145\/3447548.3467348"},{"key":"e_1_3_2_2_7_1","doi-asserted-by":"crossref","unstructured":"Jaroslav Fowkes and Charles Sutton. 2016. A Subsequence Interleaving Model for Sequential Pattern Mining. In KDD. Jaroslav Fowkes and Charles Sutton. 2016. A Subsequence Interleaving Model for Sequential Pattern Mining. In KDD.","DOI":"10.1145\/2939672.2939787"},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-022-00846-z"},{"key":"e_1_3_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2002.1000341"},{"volume-title":"Summarising Event Sequences Using Serial Episodes and an Ontology. DMNLP","year":"2017","author":"Grosse Kathrin","key":"e_1_3_2_2_10_1","unstructured":"Kathrin Grosse and Jilles Vreeken . 2017. Summarising Event Sequences Using Serial Episodes and an Ontology. DMNLP ( 2017 ), 16. Kathrin Grosse and Jilles Vreeken. 2017. Summarising Event Sequences Using Serial Episodes and an Ontology. DMNLP (2017), 16."},{"volume-title":"The Minimum Description Length Principle","author":"Gr\u00fcnwald Peter","key":"e_1_3_2_2_11_1","unstructured":"Peter Gr\u00fcnwald . 2007. The Minimum Description Length Principle . MIT Press . Peter Gr\u00fcnwald. 2007. The Minimum Description Length Principle. MIT Press."},{"volume-title":"Fuzzy Miningtextendash Adaptive Process Simplification Based on Multi-Perspective Metrics","author":"G\u00fcnther Christian W","key":"e_1_3_2_2_12_1","unstructured":"Christian W G\u00fcnther and Wil MP Van Der Aalst . 2007. Fuzzy Miningtextendash Adaptive Process Simplification Based on Multi-Perspective Metrics . In BPM. Springer . Christian W G\u00fcnther and Wil MP Van Der Aalst. 2007. Fuzzy Miningtextendash Adaptive Process Simplification Based on Multi-Perspective Metrics. In BPM. Springer."},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-022-00848-x"},{"key":"e_1_3_2_2_14_1","doi-asserted-by":"crossref","unstructured":"Srivatsan Laxman P. S. Sastry and K. P. Unnikrishnan. 2007. A fast algorithm for finding frequent episodes in event streams. In KDD (San Jose California USA). 410--419. Srivatsan Laxman P. S. Sastry and K. P. Unnikrishnan. 2007. A fast algorithm for finding frequent episodes in event streams. In KDD (San Jose California USA). 410--419.","DOI":"10.1145\/1281192.1281238"},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"crossref","unstructured":"M. Li and P. Vit\u00e1nyi. 1993. An Introduction to Kolmogorov Complexity and its Applications. Springer. M. Li and P. Vit\u00e1nyi. 1993. An Introduction to Kolmogorov Complexity and its Applications. Springer.","DOI":"10.1007\/978-1-4757-3860-5"},{"key":"e_1_3_2_2_16_1","unstructured":"Heikki Mannila. 1997. Discovery of Frequent Episodes in Event Sequences. Data Min. Knowl. Disc. (1997) 31. Heikki Mannila. 1997. Discovery of Frequent Episodes in Event Sequences. Data Min. Knowl. Disc. (1997) 31."},{"volume-title":"Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781","year":"2013","author":"Mikolov Tomas","key":"e_1_3_2_2_17_1","unstructured":"Tomas Mikolov , Kai Chen , Greg Corrado , and Jeffrey Dean . 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 ( 2013 ). Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)."},{"key":"e_1_3_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/219717.219748"},{"key":"e_1_3_2_2_19_1","doi-asserted-by":"crossref","unstructured":"Jian Pei Jiawei Han and Wei Wang. 2002. Mining sequential patterns with constraints in large databases. In CIKM. 18--25. Jian Pei Jiawei Han and Wei Wang. 2002. Mining sequential patterns with constraints in large databases. In CIKM. 18--25.","DOI":"10.1145\/584792.584799"},{"key":"e_1_3_2_2_20_1","first-page":"133","article-title":"Constraint-based sequential pattern mining: the pattern-growth methods","volume":"28","author":"Pei Jian","year":"2007","unstructured":"Jian Pei , Jiawei Han , and Wei Wang . 2007 . Constraint-based sequential pattern mining: the pattern-growth methods . JIIS , Vol. 28 , 2 (2007), 133 -- 160 . Jian Pei, Jiawei Han, and Wei Wang. 2007. Constraint-based sequential pattern mining: the pattern-growth methods. JIIS, Vol. 28, 2 (2007), 133--160.","journal-title":"JIIS"},{"key":"e_1_3_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-016-0467-9"},{"volume-title":"Efficient Permutation Testing for Significant Sequential Patterns","author":"Pinxteren Sam","key":"e_1_3_2_2_22_1","unstructured":"Sam Pinxteren and Toon Calders . 2021. Efficient Permutation Testing for Significant Sequential Patterns . In SDM. SIAM , 19--27. Sam Pinxteren and Toon Calders. 2021. Efficient Permutation Testing for Significant Sequential Patterns. In SDM. SIAM, 19--27."},{"key":"e_1_3_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1176346150"},{"volume-title":"Mining Sequential Patterns: Generalizations and Performance Improvements. In International Conference on Extending Database Technology. Springer, 1--17","year":"1996","author":"Srikant Ramakrishnan","key":"e_1_3_2_2_24_1","unstructured":"Ramakrishnan Srikant and Rakesh Agrawal . 1996 . Mining Sequential Patterns: Generalizations and Performance Improvements. In International Conference on Extending Database Technology. Springer, 1--17 . Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining Sequential Patterns: Generalizations and Performance Improvements. In International Conference on Extending Database Technology. Springer, 1--17."},{"key":"e_1_3_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0167-739X(97)00019-8"},{"volume-title":"ICEIS.","author":"Sun Yaguang","key":"e_1_3_2_2_26_1","unstructured":"Yaguang Sun and Bernhard Bauer . 2016. A Graph and Trace Clustering-based Approach for Abstracting Mined Business Process Models :. In ICEIS. Rome, Italy . Yaguang Sun and Bernhard Bauer. 2016. A Graph and Trace Clustering-based Approach for Abstracting Mined Business Process Models:. In ICEIS. Rome, Italy."},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"crossref","unstructured":"Nikolaj Tatti and Jilles Vreeken. 2012. The Long and the Short of It: Summarizing Event Sequences with Serial Episodes. In KDD. ACM 462--470. Nikolaj Tatti and Jilles Vreeken. 2012. The Long and the Short of It: Summarizing Event Sequences with Serial Episodes. In KDD. ACM 462--470.","DOI":"10.1145\/2339530.2339606"},{"volume-title":"Process Mining: Fuzzy Clustering and Performance Visualization","year":"2009","author":"van Dongen Boudewijn F","key":"e_1_3_2_2_28_1","unstructured":"Boudewijn F van Dongen and Arya Adriansyah . 2009 . Process Mining: Fuzzy Clustering and Performance Visualization . In BPM. Springer , 158--169. Boudewijn F van Dongen and Arya Adriansyah. 2009. Process Mining: Fuzzy Clustering and Performance Visualization. In BPM. Springer, 158--169."},{"key":"e_1_3_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-71050-9"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-010-0202-x"},{"volume-title":"BIDE: Efficient Mining of Frequent Closed Sequences. In ICDE. 79--90.","year":"2004","author":"Wang Jianyong","key":"e_1_3_2_2_31_1","unstructured":"Jianyong Wang and Jiawei Han . 2004 . BIDE: Efficient Mining of Frequent Closed Sequences. In ICDE. 79--90. Jianyong Wang and Jiawei Han. 2004. BIDE: Efficient Mining of Frequent Closed Sequences. In ICDE. 79--90."},{"key":"e_1_3_2_2_32_1","doi-asserted-by":"crossref","unstructured":"Boris Wiegand Dietrich Klakow and Jilles Vreeken. 2021. Mining Easily Understandable Models from Complex Event Logs. In SDM. 10. Boris Wiegand Dietrich Klakow and Jilles Vreeken. 2021. Mining Easily Understandable Models from Complex Event Logs. In SDM. 10.","DOI":"10.1137\/1.9781611976700.28"}],"event":{"name":"KDD '23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data"],"location":"Long Beach CA USA","acronym":"KDD '23"},"container-title":["Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3580305.3599264","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,9]],"date-time":"2023-09-09T05:04:37Z","timestamp":1694235877000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3580305.3599264"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,4]]},"references-count":32,"alternative-id":["10.1145\/3580305.3599264","10.1145\/3580305"],"URL":"http:\/\/dx.doi.org\/10.1145\/3580305.3599264","relation":{},"subject":[],"published":{"date-parts":[[2023,8,4]]},"assertion":[{"value":"2023-08-04","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}