{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:49:25Z","timestamp":1730324965929,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":38,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,1,7]]},"DOI":"10.1145\/3512388.3512434","type":"proceedings-article","created":{"date-parts":[[2022,3,28]],"date-time":"2022-03-28T22:28:13Z","timestamp":1648506493000},"page":"317-325","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Synthetic data generation for watermark extraction from 3D printed objects"],"prefix":"10.1145","author":[{"given":"Xin","family":"Zhang","sequence":"first","affiliation":[{"name":"Computer Science, Surrey University, UK"}]},{"given":"Ning","family":"Jia","sequence":"additional","affiliation":[{"name":"Durham University, UK"}]},{"given":"Ioannis","family":"Ivrissimtzis","sequence":"additional","affiliation":[{"name":"Computer Science, Durham University, UK"}]}],"member":"320","published-online":{"date-parts":[[2022,3,28]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00296"},{"key":"e_1_3_2_1_2_1","unstructured":"Bernhard Vogl. 2019. Bernhard Vogl Light probes. http:\/\/dativ.at\/lightprobes\/. Bernhard Vogl. 2019. Bernhard Vogl Light probes. http:\/\/dativ.at\/lightprobes\/."},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/300776.300778"},{"volume-title":"Blind 3D-printing watermarking using moment alignment and surface norm distribution","year":"2020","author":"Delmotte Arnaud","key":"e_1_3_2_1_4_1","unstructured":"Arnaud Delmotte , Kenichiro Tanaka , Hiroyuki Kubo , Takuya Funatomi , and Yasuhiro Mukaigawa . 2020. Blind 3D-printing watermarking using moment alignment and surface norm distribution . IEEE Transactions on Multimedia( 2020 ), 1\u20131. https:\/\/doi.org\/10.1109\/TMM.2020.3025660 10.1109\/TMM.2020.3025660 Arnaud Delmotte, Kenichiro Tanaka, Hiroyuki Kubo, Takuya Funatomi, and Yasuhiro Mukaigawa. 2020. Blind 3D-printing watermarking using moment alignment and surface norm distribution. IEEE Transactions on Multimedia(2020), 1\u20131. https:\/\/doi.org\/10.1109\/TMM.2020.3025660"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3197517.3201378"},{"volume-title":"Computer Graphics Forum, Vol.\u00a038","author":"Deschaintre Valentin","key":"e_1_3_2_1_6_1","unstructured":"Valentin Deschaintre , Miika Aittala , Fr\u00e9do Durand , George Drettakis , and Adrien Bousseau . 2019. Flexible svbrdf capture with a multi-image deep network . In Computer Graphics Forum, Vol.\u00a038 . Wiley Online Library , 1\u201313. Valentin Deschaintre, Miika Aittala, Fr\u00e9do Durand, George Drettakis, and Adrien Bousseau. 2019. Flexible svbrdf capture with a multi-image deep network. In Computer Graphics Forum, Vol.\u00a038. Wiley Online Library, 1\u201313."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.316"},{"volume-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).","year":"2016","author":"Gaidon Adrien","key":"e_1_3_2_1_8_1","unstructured":"Adrien Gaidon , Qiao Wang , Yohann Cabon , and Eleonora Vig . 2016 . Virtual Worlds as Proxy for Multi-Object Tracking Analysis . In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. 2016. Virtual Worlds as Proxy for Multi-Object Tracking Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2021.3065225"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.254"},{"volume-title":"Proc. CVPR. 4077\u20134085","year":"2016","author":"Handa Ankur","key":"e_1_3_2_1_11_1","unstructured":"Ankur Handa , Viorica Patraucean , Vijay Badrinarayanan , Simon Stent , and Roberto Cipolla . 2016 . Understanding real world indoor scenes with synthetic data . In Proc. CVPR. 4077\u20134085 . Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and Roberto Cipolla. 2016. Understanding real world indoor scenes with synthetic data. In Proc. CVPR. 4077\u20134085."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00220"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-40760-4_7"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/2756601.2756607"},{"key":"e_1_3_2_1_16_1","unstructured":"Max Jaderberg Karen Simonyan Andrea Vedaldi and Andrew Zisserman. 2014. Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227(2014). Max Jaderberg Karen Simonyan Andrea Vedaldi and Andrew Zisserman. 2014. Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227(2014)."},{"volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014).","year":"2014","author":"Kingma P.","key":"e_1_3_2_1_17_1","unstructured":"D.\u00a0 P. Kingma and J. Ba . 2014 . Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014). D.\u00a0P. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014)."},{"key":"e_1_3_2_1_18_1","unstructured":"Wenbin Li Sajad Saeedi John McCormac Ronald Clark Dimos Tzoumanikas Qing Ye Yuzhong Huang Rui Tang and Stefan Leutenegger. 2018. InteriorNet: Mega-scale multi-sensor photo-realistic indoor scenes dataset. arXiv preprint arXiv:1809.00716(2018). Wenbin Li Sajad Saeedi John McCormac Ronald Clark Dimos Tzoumanikas Qing Ye Yuzhong Huang Rui Tang and Stefan Leutenegger. 2018. InteriorNet: Mega-scale multi-sensor photo-realistic indoor scenes dataset. arXiv preprint arXiv:1809.00716(2018)."},{"key":"e_1_3_2_1_19_1","first-page":"1","article-title":"Modeling surface appearance from a single photograph using self-augmented convolutional neural networks","volume":"36","author":"Li Xiao","year":"2017","unstructured":"Xiao Li , Yue Dong , Pieter Peers , and Xin Tong . 2017 . Modeling surface appearance from a single photograph using self-augmented convolutional neural networks . ACM Transactions on Graphics (ToG) 36 , 4 (2017), 1 \u2013 11 . Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling surface appearance from a single photograph using self-augmented convolutional neural networks. ACM Transactions on Graphics (ToG) 36, 4 (2017), 1\u201311.","journal-title":"ACM Transactions on Graphics (ToG)"},{"volume-title":"Proc. of the International Conference on 3D Web Technology. ACM, 89\u201395","author":"Macq B.","key":"e_1_3_2_1_20_1","unstructured":"B. Macq , P.\u00a0 R. Alface , and M. Montanola . 2015. Applicability of Watermarking for Intellectual Property Rights Protection in a 3D Printing Scenario . In Proc. of the International Conference on 3D Web Technology. ACM, 89\u201395 . B. Macq, P.\u00a0R. Alface, and M. Montanola. 2015. Applicability of Watermarking for Intellectual Property Rights Protection in a 3D Printing Scenario. In Proc. of the International Conference on 3D Web Technology. ACM, 89\u201395."},{"volume-title":"Medical Imaging 2018: Image Processing, Vol.\u00a010574","author":"Mahmood Faisal","key":"e_1_3_2_1_21_1","unstructured":"Faisal Mahmood and Nicholas\u00a0 J Durr . 2018. Deep learning-based depth estimation from a synthetic endoscopy image training set . In Medical Imaging 2018: Image Processing, Vol.\u00a010574 . International Society for Optics and Photonics , 1057421. Faisal Mahmood and Nicholas\u00a0J Durr. 2018. Deep learning-based depth estimation from a synthetic endoscopy image training set. In Medical Imaging 2018: Image Processing, Vol.\u00a010574. International Society for Optics and Photonics, 1057421."},{"key":"e_1_3_2_1_22_1","unstructured":"mitsuba-renderer.org. 2019. Mitsuba Physically Based Render. https:\/\/www.mitsuba-renderer.org\/. mitsuba-renderer.org. 2019. Mitsuba Physically Based Render. https:\/\/www.mitsuba-renderer.org\/."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-49409-8_18"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00418"},{"key":"e_1_3_2_1_25_1","unstructured":"Paul Debevec. 2019. High-Resolution Light Probe Image Gallery. http:\/\/gl.ict.usc.edu\/Data\/HighResProbes\/. Paul Debevec. 2019. High-Resolution Light Probe Image Gallery. http:\/\/gl.ict.usc.edu\/Data\/HighResProbes\/."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/311535.311545"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.56"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46475-6_7"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2015.21"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"e_1_3_2_1_31_1","unstructured":"Jinde Shubham. [n. d.]. What exactly does CNN see?https:\/\/becominghuman.ai\/what-exactly-does-cnn-see-4d436d8e6e52. 2018-01-14. Jinde Shubham. [n. d.]. What exactly does CNN see?https:\/\/becominghuman.ai\/what-exactly-does-cnn-see-4d436d8e6e52. 2018-01-14."},{"volume-title":"Wohlers Associations","year":"2012","author":"Terry W","key":"e_1_3_2_1_32_1","unstructured":"W Terry . 2012. Additive manufacturing and 3D printing state of the industry. Annual Worldwide Progress Report , Wohlers Associations ( 2012 ). W Terry. 2012. Additive manufacturing and 3D printing state of the industry. Annual Worldwide Progress Report, Wohlers Associations (2012)."},{"volume-title":"Domain randomization for transferring deep neural networks from simulation to the real world","author":"Tobin Josh","key":"e_1_3_2_1_33_1","unstructured":"Josh Tobin , Rachel Fong , Alex Ray , Jonas Schneider , Wojciech Zaremba , and Pieter Abbeel . 2017. Domain randomization for transferring deep neural networks from simulation to the real world . In IROS. IEEE , 23\u201330. Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. 2017. Domain randomization for transferring deep neural networks from simulation to the real world. In IROS. IEEE, 23\u201330."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2018.00275"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/2980179.2982404"},{"key":"e_1_3_2_1_36_1","unstructured":"Xin Zhang Ning Jia and Ioannis\u00a0P. Ivrissimtzis. 2019. Watermark retrieval from 3D printed objects via synthetic data training. CoRR abs\/1905.09706(2019). arxiv:1905.09706http:\/\/arxiv.org\/abs\/1905.09706 Xin Zhang Ning Jia and Ioannis\u00a0P. Ivrissimtzis. 2019. Watermark retrieval from 3D printed objects via synthetic data training. CoRR abs\/1905.09706(2019). arxiv:1905.09706http:\/\/arxiv.org\/abs\/1905.09706"},{"key":"e_1_3_2_1_37_1","unstructured":"X. Zhang Q. Wang T. Breckon and I. Ivrissimtzis. 2018. Watermark Retrieval from 3D Printed Objects via Convolutional Neural Networks. arXiv preprint arXiv:1811.07640(2018). X. Zhang Q. Wang T. Breckon and I. Ivrissimtzis. 2018. Watermark Retrieval from 3D Printed Objects via Convolutional Neural Networks. arXiv preprint arXiv:1811.07640(2018)."},{"volume-title":"Unrealstereo: A synthetic dataset for analyzing stereo vision. arXiv preprint arXiv:1612.04647(2016).","year":"2016","author":"Zhang Yi","key":"e_1_3_2_1_38_1","unstructured":"Yi Zhang , Weichao Qiu , Qi Chen , Xiaolin Hu , and Alan Yuille . 2016 . Unrealstereo: A synthetic dataset for analyzing stereo vision. arXiv preprint arXiv:1612.04647(2016). Yi Zhang, Weichao Qiu, Qi Chen, Xiaolin Hu, and Alan Yuille. 2016. Unrealstereo: A synthetic dataset for analyzing stereo vision. arXiv preprint arXiv:1612.04647(2016)."}],"event":{"name":"ICIGP 2022: 2022 the 5th International Conference on Image and Graphics Processing","acronym":"ICIGP 2022","location":"Beijing China"},"container-title":["2022 the 5th International Conference on Image and Graphics Processing (ICIGP)"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3512388.3512434","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,14]],"date-time":"2023-01-14T16:01:49Z","timestamp":1673712109000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3512388.3512434"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,7]]},"references-count":38,"alternative-id":["10.1145\/3512388.3512434","10.1145\/3512388"],"URL":"https:\/\/doi.org\/10.1145\/3512388.3512434","relation":{},"subject":[],"published":{"date-parts":[[2022,1,7]]},"assertion":[{"value":"2022-03-28","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}