{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T01:49:36Z","timestamp":1729648176026,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":73,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,11,29]]},"DOI":"10.1145\/3487664.3487701","type":"proceedings-article","created":{"date-parts":[[2021,12,31]],"date-time":"2021-12-31T02:06:14Z","timestamp":1640916374000},"page":"267-277","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["Unsupervised Keyword Combination Query Generation from Online Health Related Content for Evidence-Based Fact Checking"],"prefix":"10.1145","author":[{"given":"Pritam","family":"Deka","sequence":"first","affiliation":[{"name":"Queen's University Belfast, UK"}]},{"given":"Anna","family":"Jurek-Loughrey","sequence":"additional","affiliation":[{"name":"Queen's University Belfast, UK"}]},{"family":"Deepak","sequence":"additional","affiliation":[{"name":"Queen's University Belfast, UK"}]}],"member":"320","published-online":{"date-parts":[[2021,12,30]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"Titipat Achakulvisut Chandra Bhagavatula Daniel Acuna and Konrad Kording. 2019. Claim extraction in biomedical publications using deep discourse model and transfer learning. arXiv preprint arXiv:1907.00962(2019). Titipat Achakulvisut Chandra Bhagavatula Daniel Acuna and Konrad Kording. 2019. Claim extraction in biomedical publications using deep discourse model and transfer learning. arXiv preprint arXiv:1907.00962(2019)."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1257\/jep.31.2.211"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2019.03.002"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"crossref","unstructured":"Kamil Bennani-Smires Claudiu Musat Andreea Hossmann Michael Baeriswyl and Martin Jaggi. 2018. Simple unsupervised keyphrase extraction using sentence embeddings. arXiv preprint arXiv:1801.04470(2018). Kamil Bennani-Smires Claudiu Musat Andreea Hossmann Michael Baeriswyl and Martin Jaggi. 2018. Simple unsupervised keyphrase extraction using sentence embeddings. arXiv preprint arXiv:1801.04470(2018).","DOI":"10.18653\/v1\/K18-1022"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.5555\/944919.944937"},{"volume-title":"Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations. 69\u201373","year":"2016","author":"Boudin Florian","key":"e_1_3_2_1_6_1"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"crossref","unstructured":"Florian Boudin. 2018. Unsupervised keyphrase extraction with multipartite graphs. arXiv preprint arXiv:1803.08721(2018). Florian Boudin. 2018. Unsupervised keyphrase extraction with multipartite graphs. arXiv preprint arXiv:1803.08721(2018).","DOI":"10.18653\/v1\/N18-2105"},{"volume-title":"Topicrank: Graph-based topic ranking for keyphrase extraction. In International joint conference on natural language processing (IJCNLP). 543\u2013551.","year":"2013","author":"Bougouin Adrien","key":"e_1_3_2_1_8_1"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"crossref","unstructured":"Samuel\u00a0R Bowman Gabor Angeli Christopher Potts and Christopher\u00a0D Manning. 2015. A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326(2015). Samuel\u00a0R Bowman Gabor Angeli Christopher Potts and Christopher\u00a0D Manning. 2015. A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326(2015).","DOI":"10.18653\/v1\/D15-1075"},{"volume-title":"Means and their inequalities. Vol.\u00a031","author":"Bullen S","key":"e_1_3_2_1_10_1"},{"key":"e_1_3_2_1_11_1","unstructured":"Daniel Cer Mona Diab Eneko Agirre Inigo Lopez-Gazpio and Lucia Specia. 2017. Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv:1708.00055(2017). Daniel Cer Mona Diab Eneko Agirre Inigo Lopez-Gazpio and Lucia Specia. 2017. Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv:1708.00055(2017)."},{"key":"e_1_3_2_1_12_1","unstructured":"Daniel Cer Yinfei Yang Sheng-yi Kong Nan Hua Nicole Limtiaco Rhomni\u00a0St John Noah Constant Mario Guajardo-Cespedes Steve Yuan Chris Tar 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175(2018). Daniel Cer Yinfei Yang Sheng-yi Kong Nan Hua Nicole Limtiaco Rhomni\u00a0St John Noah Constant Mario Guajardo-Cespedes Steve Yuan Chris Tar 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175(2018)."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1001\/jama.2018.16865"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"crossref","unstructured":"Alexis Conneau Douwe Kiela Holger Schwenk Loic Barrault and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364(2017). Alexis Conneau Douwe Kiela Holger Schwenk Loic Barrault and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364(2017).","DOI":"10.18653\/v1\/D17-1070"},{"volume-title":"Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805(2018).","year":"2018","author":"Devlin Jacob","key":"e_1_3_2_1_15_1"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/3308560.3316741"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1177\/1357633X13519036"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1102"},{"key":"e_1_3_2_1_19_1","first-page":"771","article-title":"A short introduction to boosting","volume":"14","author":"Freund Yoav","year":"1999","journal-title":"Journal-Japanese Society For Artificial Intelligence"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3307339.3342147"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"crossref","unstructured":"Amira Ghenai and Yelena Mejova. 2017. Catching Zika fever: Application of crowdsourcing and machine learning for tracking health misinformation on Twitter. arXiv preprint arXiv:1707.03778(2017). Amira Ghenai and Yelena Mejova. 2017. Catching Zika fever: Application of crowdsourcing and machine learning for tracking health misinformation on Twitter. arXiv preprint arXiv:1707.03778(2017).","DOI":"10.1109\/ICHI.2017.58"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1145\/3274327"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/1526709.1526798"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"crossref","unstructured":"Suchin Gururangan Ana Marasovi\u0107 Swabha Swayamdipta Kyle Lo Iz Beltagy Doug Downey and Noah\u00a0A Smith. 2020. Don\u2019t stop pretraining: adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964(2020). Suchin Gururangan Ana Marasovi\u0107 Swabha Swayamdipta Kyle Lo Iz Beltagy Doug Downey and Noah\u00a0A Smith. 2020. Don\u2019t stop pretraining: adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964(2020).","DOI":"10.18653\/v1\/2020.acl-main.740"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.2307\/4146884"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P14-1119"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.5555\/647343.721390"},{"key":"e_1_3_2_1_28_1","unstructured":"Armand Joulin Edouard Grave Piotr Bojanowski and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759(2016). Armand Joulin Edouard Grave Piotr Bojanowski and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759(2016)."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.indmarman.2019.08.003"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICHI.2017.93"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"crossref","unstructured":"Shimon Kogan Tobias\u00a0J Moskowitz and Marina Niessner. 2019. Fake news: Evidence from financial markets. Available at SSRN 3237763(2019). Shimon Kogan Tobias\u00a0J Moskowitz and Marina Niessner. 2019. Fake news: Evidence from financial markets. Available at SSRN 3237763(2019).","DOI":"10.2139\/ssrn.3237763"},{"key":"e_1_3_2_1_32_1","unstructured":"Jey\u00a0Han Lau and Timothy Baldwin. 2016. An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368(2016). Jey\u00a0Han Lau and Timothy Baldwin. 2016. An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368(2016)."},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1093\/bioinformatics\/btz682","article-title":"BioBERT: a pre-trained biomedical language representation model for biomedical text mining","volume":"36","author":"Lee Jinhyuk","year":"2020","journal-title":"Bioinformatics"},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.clinicalnlp-1.17"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/3018661.3018688"},{"key":"e_1_3_2_1_36_1","unstructured":"Fangyu Liu Ehsan Shareghi Zaiqiao Meng Marco Basaldella and Nigel Collier. 2020. Self-alignment Pre-training for Biomedical Entity Representations. arXiv preprint arXiv:2010.11784(2020). Fangyu Liu Ehsan Shareghi Zaiqiao Meng Marco Basaldella and Nigel Collier. 2020. Self-alignment Pre-training for Biomedical Entity Representations. arXiv preprint arXiv:2010.11784(2020)."},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.5555\/3504035.3504079"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2946624"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.5555\/1870658.1870694"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.5555\/1699510.1699544"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0218213004001466"},{"volume-title":"Proceedings of the 2004 conference on empirical methods in natural language processing. 404\u2013411","year":"2004","author":"Mihalcea Rada","key":"e_1_3_2_1_42_1"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.5555\/2999792.2999959"},{"key":"e_1_3_2_1_44_1","unstructured":"Federico Monti Fabrizio Frasca Davide Eynard Damon Mannion and Michael\u00a0M Bronstein. 2019. Fake news detection on social media using geometric deep learning. arXiv preprint arXiv:1902.06673(2019). Federico Monti Fabrizio Frasca Davide Eynard Damon Mannion and Michael\u00a0M Bronstein. 2019. Fake news detection on social media using geometric deep learning. arXiv preprint arXiv:1902.06673(2019)."},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623714"},{"volume-title":"ICSSM Proceedings, July(2018)","year":"2018","author":"Nagi Kuldeep","key":"e_1_3_2_1_46_1"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W19-5034"},{"key":"e_1_3_2_1_49_1","unstructured":"Matteo Pagliardini Prakhar Gupta and Martin Jaggi. 2017. Unsupervised learning of sentence embeddings using compositional n-gram features. arXiv preprint arXiv:1703.02507(2017). Matteo Pagliardini Prakhar Gupta and Martin Jaggi. 2017. Unsupervised learning of sentence embeddings using compositional n-gram features. arXiv preprint arXiv:1703.02507(2017)."},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"crossref","unstructured":"Yifan Peng Shankai Yan and Zhiyong Lu. 2019. Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. arXiv preprint arXiv:1906.05474(2019). Yifan Peng Shankai Yan and Zhiyong Lu. 2019. Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. arXiv preprint arXiv:1906.05474(2019).","DOI":"10.18653\/v1\/W19-5006"},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1162"},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W16-2811"},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"crossref","unstructured":"Martin Potthast Johannes Kiesel Kevin Reinartz Janek Bevendorff and Benno Stein. 2017. A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638(2017). Martin Potthast Johannes Kiesel Kevin Reinartz Janek Bevendorff and Benno Stein. 2017. A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638(2017).","DOI":"10.18653\/v1\/P18-1022"},{"key":"e_1_3_2_1_54_1","unstructured":"David\u00a0MW Powers. 2020. Evaluation: from precision recall and F-measure to ROC informedness markedness and correlation. arXiv preprint arXiv:2010.16061(2020). David\u00a0MW Powers. 2020. Evaluation: from precision recall and F-measure to ROC informedness markedness and correlation. arXiv preprint arXiv:2010.16061(2020)."},{"volume-title":"Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084(2019).","year":"2019","author":"Reimers Nils","key":"e_1_3_2_1_55_1"},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1016\/0377-0427(87)90125-7"},{"key":"e_1_3_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W16-0802"},{"key":"e_1_3_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-89656-4_9"},{"key":"e_1_3_2_1_59_1","unstructured":"Kamal Sarkar Mita Nasipuri and Suranjan Ghose. 2010. A new approach to keyphrase extraction using neural networks. arXiv preprint arXiv:1004.3274(2010). Kamal Sarkar Mita Nasipuri and Suranjan Ghose. 2010. A new approach to keyphrase extraction using neural networks. arXiv preprint arXiv:1004.3274(2010)."},{"key":"e_1_3_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10791-020-09381-1"},{"key":"e_1_3_2_1_61_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btx238"},{"key":"e_1_3_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1162\/COLI_a_00295"},{"volume-title":"The uses of argument","author":"Toulmin E","key":"e_1_3_2_1_63_1","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511840005"},{"key":"e_1_3_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1009976227802"},{"key":"e_1_3_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.5555\/3295222.3295349"},{"volume-title":"The spread of true and false news online. Science 359, 6380","year":"2018","author":"Vosoughi Soroush","key":"e_1_3_2_1_66_1"},{"key":"e_1_3_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.5555\/1620163.1620205"},{"key":"e_1_3_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219903"},{"key":"e_1_3_2_1_69_1","unstructured":"Adina Williams Nikita Nangia and Samuel\u00a0R Bowman. 2017. A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:1704.05426(2017). Adina Williams Nikita Nangia and Samuel\u00a0R Bowman. 2017. A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:1704.05426(2017)."},{"volume-title":"Kea: Practical automated keyphrase extraction. In Design and Usability of Digital Libraries: Case Studies in the Asia Pacific. IGI global, 129\u2013152.","year":"2005","author":"Witten H","key":"e_1_3_2_1_70_1"},{"key":"e_1_3_2_1_71_1","doi-asserted-by":"crossref","unstructured":"Thomas Wolf Lysandre Debut Victor Sanh Julien Chaumond Clement Delangue Anthony Moi Pierric Cistac Tim Rault R\u00e9mi Louf Morgan Funtowicz 2019. Huggingface\u2019s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771(2019). Thomas Wolf Lysandre Debut Victor Sanh Julien Chaumond Clement Delangue Anthony Moi Pierric Cistac Tim Rault R\u00e9mi Louf Morgan Funtowicz 2019. Huggingface\u2019s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771(2019).","DOI":"10.18653\/v1\/2020.emnlp-demos.6"},{"key":"e_1_3_2_1_72_1","doi-asserted-by":"publisher","DOI":"10.1145\/1099554.1099628"},{"key":"e_1_3_2_1_73_1","unstructured":"Jiawei Zhang Limeng Cui Yanjie Fu and Fisher\u00a0B Gouza. 2018. Fake news detection with deep diffusive network model. arXiv preprint arXiv:1805.08751(2018). Jiawei Zhang Limeng Cui Yanjie Fu and Fisher\u00a0B Gouza. 2018. Fake news detection with deep diffusive network model. arXiv preprint arXiv:1805.08751(2018)."},{"key":"e_1_3_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D16-1080"}],"event":{"name":"iiWAS2021: The 23rd International Conference on Information Integration and Web Intelligence","acronym":"iiWAS2021","location":"Linz Austria"},"container-title":["The 23rd International Conference on Information Integration and Web Intelligence"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3487664.3487701","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,15]],"date-time":"2023-11-15T01:23:25Z","timestamp":1700011405000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3487664.3487701"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,29]]},"references-count":73,"alternative-id":["10.1145\/3487664.3487701","10.1145\/3487664"],"URL":"https:\/\/doi.org\/10.1145\/3487664.3487701","relation":{},"subject":[],"published":{"date-parts":[[2021,11,29]]},"assertion":[{"value":"2021-12-30","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}