iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1145/3459637.3482142
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T09:48:01Z","timestamp":1725616081464},"publisher-location":"New York, NY, USA","reference-count":32,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,10,26]]},"DOI":"10.1145\/3459637.3482142","type":"proceedings-article","created":{"date-parts":[[2021,10,30]],"date-time":"2021-10-30T18:34:11Z","timestamp":1635618851000},"page":"2930-2934","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Mitigating Deep Double Descent by Concatenating Inputs"],"prefix":"10.1145","author":[{"given":"John","family":"Chen","sequence":"first","affiliation":[{"name":"Rice University, Houston, TX, USA"}]},{"given":"Qihan","family":"Wang","sequence":"additional","affiliation":[{"name":"Rice University, Houston, TX, USA"}]},{"given":"Anastasios","family":"Kyrillidis","sequence":"additional","affiliation":[{"name":"Rice University, Houston, TX, USA"}]}],"member":"320","published-online":{"date-parts":[[2021,10,30]]},"reference":[{"volume-title":"High-dimensional dynamics of generalization error in neural networks. arXiv preprint arXiv:1710.03667","year":"2017","author":"Advani Madhu S","key":"e_1_3_2_1_1_1","unstructured":"Madhu S Advani and Andrew M Saxe . 2017. High-dimensional dynamics of generalization error in neural networks. arXiv preprint arXiv:1710.03667 ( 2017 ). Madhu S Advani and Andrew M Saxe. 2017. High-dimensional dynamics of generalization error in neural networks. arXiv preprint arXiv:1710.03667 (2017)."},{"key":"e_1_3_2_1_2_1","unstructured":"Jimmy Ba Murat Erdogdu Taiji Suzuki Denny Wu and Tianzong Zhang. 2020. Generalization of Two-layer Neural Networks: An Asymptotic Viewpoint. In ICLR. Jimmy Ba Murat Erdogdu Taiji Suzuki Denny Wu and Tianzong Zhang. 2020. Generalization of Two-layer Neural Networks: An Asymptotic Viewpoint. In ICLR."},{"volume-title":"Benign overfitting in linear regression. arXiv preprint arXiv:1906.11300","year":"2019","author":"Bartlett Peter L","key":"e_1_3_2_1_3_1","unstructured":"Peter L Bartlett , Philip M Long , Gabor Lugosi , and Alexander Tsigler . 2019. Benign overfitting in linear regression. arXiv preprint arXiv:1906.11300 ( 2019 ). Peter L Bartlett, Philip M Long, Gabor Lugosi, and Alexander Tsigler. 2019. Benign overfitting in linear regression. arXiv preprint arXiv:1906.11300 (2019)."},{"volume-title":"Reconciling modern machine learning practice and the bias-variance trade-off. arXiv preprint arXiv:1812.11118","year":"2018","author":"Belkin Mikhail","key":"e_1_3_2_1_4_1","unstructured":"Mikhail Belkin , Daniel Hsu , Siyuan Ma , and Soumik Mandal . 2018a. Reconciling modern machine learning practice and the bias-variance trade-off. arXiv preprint arXiv:1812.11118 ( 2018 ). Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. 2018a. Reconciling modern machine learning practice and the bias-variance trade-off. arXiv preprint arXiv:1812.11118 (2018)."},{"volume-title":"2019 a. Two models of double descent for weak features. arXiv preprint arXiv:1903.07571","year":"2019","author":"Belkin Mikhail","key":"e_1_3_2_1_5_1","unstructured":"Mikhail Belkin , Daniel Hsu , and Ji Xu . 2019 a. Two models of double descent for weak features. arXiv preprint arXiv:1903.07571 ( 2019 ). Mikhail Belkin, Daniel Hsu, and Ji Xu. 2019 a. Two models of double descent for weak features. arXiv preprint arXiv:1903.07571 (2019)."},{"volume-title":"2019 b. Two models of double descent for weak features. arxiv","year":"1903","author":"Belkin Mikhail","key":"e_1_3_2_1_6_1","unstructured":"Mikhail Belkin , Daniel Hsu , and Ji Xu . 2019 b. Two models of double descent for weak features. arxiv : 1903 .07571 [cs.LG] Mikhail Belkin, Daniel Hsu, and Ji Xu. 2019 b. Two models of double descent for weak features. arxiv: 1903.07571 [cs.LG]"},{"volume-title":"To understand deep learning we need to understand kernel learning. arxiv","year":"1802","author":"Belkin Mikhail","key":"e_1_3_2_1_7_1","unstructured":"Mikhail Belkin , Siyuan Ma , and Soumik Mandal . 2018b. To understand deep learning we need to understand kernel learning. arxiv : 1802 .01396 [stat.ML] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. 2018b. To understand deep learning we need to understand kernel learning. arxiv: 1802.01396 [stat.ML]"},{"volume-title":"A new look at an old problem: A universal learning approach to linear regression. arXiv preprint arXiv:1905.04708","year":"2019","author":"Bibas Koby","key":"e_1_3_2_1_8_1","unstructured":"Koby Bibas , Yaniv Fogel , and Meir Feder . 2019. A new look at an old problem: A universal learning approach to linear regression. arXiv preprint arXiv:1905.04708 ( 2019 ). Koby Bibas, Yaniv Fogel, and Meir Feder. 2019. A new look at an old problem: A universal learning approach to linear regression. arXiv preprint arXiv:1905.04708 (2019)."},{"volume-title":"A finite sample analysis of the double descent phenomenon for ridge function estimation. arxiv","year":"2007","author":"Caron Emmanuel","key":"e_1_3_2_1_9_1","unstructured":"Emmanuel Caron and Stephane Chretien . 2020. A finite sample analysis of the double descent phenomenon for ridge function estimation. arxiv : 2007 .12882 [stat.ML] Emmanuel Caron and Stephane Chretien. 2020. A finite sample analysis of the double descent phenomenon for ridge function estimation. arxiv: 2007.12882 [stat.ML]"},{"volume-title":"Multiple Descent: Design Your Own Generalization Curve. arxiv","year":"2020","author":"Chen Lin","key":"e_1_3_2_1_10_1","unstructured":"Lin Chen , Yifei Min , Mikhail Belkin , and Amin Karbasi . 2020 . Multiple Descent: Design Your Own Generalization Curve. arxiv : 2008.01036 [cs.LG] Lin Chen, Yifei Min, Mikhail Belkin, and Amin Karbasi. 2020. Multiple Descent: Design Your Own Generalization Curve. arxiv: 2008.01036 [cs.LG]"},{"volume-title":"Triple descent and the two kinds of overfitting: Where and why do they appear?arxiv","year":"2006","author":"Ascoli St\u00e9phane","key":"e_1_3_2_1_11_1","unstructured":"St\u00e9phane d' Ascoli , Levent Sagun , and Giulio Biroli . 2020. Triple descent and the two kinds of overfitting: Where and why do they appear?arxiv : 2006 .03509 [cs.LG] St\u00e9phane d'Ascoli, Levent Sagun, and Giulio Biroli. 2020. Triple descent and the two kinds of overfitting: Where and why do they appear?arxiv: 2006.03509 [cs.LG]"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1088\/1742-5468\/ab633c"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.100.012115"},{"volume-title":"Neural networks and the bias\/variance dilemma. Neural Computation","year":"1992","author":"Geman Stuart","key":"e_1_3_2_1_14_1","unstructured":"Stuart Geman , Elie Bienenstock , and Ren Doursat . 1992. Neural networks and the bias\/variance dilemma. Neural Computation ( 1992 ). Stuart Geman, Elie Bienenstock, and Ren Doursat. 1992. Neural networks and the bias\/variance dilemma. Neural Computation (1992)."},{"volume-title":"Linearized two-layers neural networks in high dimension. arxiv","year":"1904","author":"Ghorbani Behrooz","key":"e_1_3_2_1_15_1","unstructured":"Behrooz Ghorbani , Song Mei , Theodor Misiakiewicz , and Andrea Montanari . 2019. Linearized two-layers neural networks in high dimension. arxiv : 1904 .12191 [math.ST] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. 2019. Linearized two-layers neural networks in high dimension. arxiv: 1904.12191 [math.ST]"},{"volume-title":"Surprises in high dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560","year":"2019","author":"Hastie Trevor","key":"e_1_3_2_1_16_1","unstructured":"Trevor Hastie , Andrea Montanari , Saharon Rosset , and Ryan J Tibshirani . 2019. Surprises in high dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560 ( 2019 ). Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. 2019. Surprises in high dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560 (2019)."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-21606-5"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"volume-title":"Laurens Van Der Maaten, and Kilian Q. Weinberger","year":"2017","author":"Huang Gao","key":"e_1_3_2_1_19_1","unstructured":"Gao Huang , Zhuang Liu , Laurens Van Der Maaten, and Kilian Q. Weinberger . 2017 . Densely connected convolutional networks. In CVPR. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. 2017. Densely connected convolutional networks. In CVPR."},{"volume-title":"Ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648","year":"2016","author":"Larsson Gustav","key":"e_1_3_2_1_20_1","unstructured":"Gustav Larsson , Michael Maire , and Gregory Shakhnarovich . 2016. Ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 ( 2016 ). Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. 2016. Ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)."},{"volume-title":"On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels. arxiv","year":"1908","author":"Liang Tengyuan","key":"e_1_3_2_1_21_1","unstructured":"Tengyuan Liang , Alexander Rakhlin , and Xiyu Zhai . 2019. On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels. arxiv : 1908 .10292 [math.ST] Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. 2019. On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels. arxiv: 1908.10292 [math.ST]"},{"volume-title":"The generalization error of random features regression: Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355","year":"2019","author":"Mei Song","key":"e_1_3_2_1_22_1","unstructured":"Song Mei and Andrea Montanari . 2019. The generalization error of random features regression: Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355 ( 2019 ). Song Mei and Andrea Montanari. 2019. The generalization error of random features regression: Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355 (2019)."},{"volume-title":"Understanding overfitting peaks in generalization error: Analytical risk curves for l2 and l1 penalized interpolation. arXiv preprint arXiv:1906.03667","year":"2019","author":"Mitra Partha P.","key":"e_1_3_2_1_23_1","unstructured":"Partha P. Mitra . 2019. Understanding overfitting peaks in generalization error: Analytical risk curves for l2 and l1 penalized interpolation. arXiv preprint arXiv:1906.03667 ( 2019 ). Partha P. Mitra. 2019. Understanding overfitting peaks in generalization error: Analytical risk curves for l2 and l1 penalized interpolation. arXiv preprint arXiv:1906.03667 (2019)."},{"volume-title":"Harmless interpolation of noisy data in regression. arXiv preprint arXiv:1903.09139","year":"2019","author":"Muthukumar Vidya","key":"e_1_3_2_1_24_1","unstructured":"Vidya Muthukumar , Kailas Vodrahalli , and Anant Sahai . 2019. Harmless interpolation of noisy data in regression. arXiv preprint arXiv:1903.09139 ( 2019 ). Vidya Muthukumar, Kailas Vodrahalli, and Anant Sahai. 2019. Harmless interpolation of noisy data in regression. arXiv preprint arXiv:1903.09139 (2019)."},{"volume-title":"More Data Can Hurt for Linear Regression: Sample-wise Double Descent. arxiv","year":"1912","author":"Nakkiran Preetum","key":"e_1_3_2_1_25_1","unstructured":"Preetum Nakkiran . 2019. More Data Can Hurt for Linear Regression: Sample-wise Double Descent. arxiv : 1912 .07242 [stat.ML] Preetum Nakkiran. 2019. More Data Can Hurt for Linear Regression: Sample-wise Double Descent. arxiv: 1912.07242 [stat.ML]"},{"volume-title":"Deep double descent: Where bigger models and more data hurt. arXiv preprint arXiv:1912.02292","year":"2019","author":"Nakkiran Preetum","key":"e_1_3_2_1_26_1","unstructured":"Preetum Nakkiran , Gal Kaplun , Yamini Bansal , Tristan Yang , Boaz Barak , and Ilya Sutskever . 2019. Deep double descent: Where bigger models and more data hurt. arXiv preprint arXiv:1912.02292 ( 2019 ). Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. 2019. Deep double descent: Where bigger models and more data hurt. arXiv preprint arXiv:1912.02292 (2019)."},{"volume-title":"Optimal Regularization Can Mitigate Double Descent. arxiv","year":"2003","author":"Nakkiran Preetum","key":"e_1_3_2_1_27_1","unstructured":"Preetum Nakkiran , Prayaag Venkat , Sham Kakade , and Tengyu Ma. 2020. Optimal Regularization Can Mitigate Double Descent. arxiv : 2003 .01897 [cs.LG] Preetum Nakkiran, Prayaag Venkat, Sham Kakade, and Tengyu Ma. 2020. Optimal Regularization Can Mitigate Double Descent. arxiv: 2003.01897 [cs.LG]"},{"volume-title":"A Modern Take on the Bias-Variance Tradeoff in Neural Networks. arxiv","year":"1810","author":"Neal Brady","key":"e_1_3_2_1_28_1","unstructured":"Brady Neal , Sarthak Mittal , Aristide Baratin , Vinayak Tantia , Matthew Scicluna , Simon Lacoste-Julien , and Ioannis Mitliagkas . 2018. A Modern Take on the Bias-Variance Tradeoff in Neural Networks. arxiv : 1810 .08591 [cs.LG] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-Julien, and Ioannis Mitliagkas. 2018. A Modern Take on the Bias-Variance Tradeoff in Neural Networks. arxiv: 1810.08591 [cs.LG]"},{"volume-title":"Deep learning tutorial at the Simons Institute","year":"2017","author":"Salakhutdinov Ruslan","key":"e_1_3_2_1_29_1","unstructured":"Ruslan Salakhutdinov . 2017. Deep learning tutorial at the Simons Institute , Berkeley . https:\/\/simons.berkeley.edu\/talks\/ruslan-salakhutdinov-01--26-- 2017 --1 (2017). Ruslan Salakhutdinov. 2017. Deep learning tutorial at the Simons Institute, Berkeley. https:\/\/simons.berkeley.edu\/talks\/ruslan-salakhutdinov-01--26--2017--1 (2017)."},{"volume-title":"Rethinking Bias-Variance Trade-off for Generalization of Neural Networks. arXiv preprint arXiv:2002.11328","year":"2020","author":"Yang Zitong","key":"e_1_3_2_1_30_1","unstructured":"Zitong Yang , Yaodong Yu , Chong You , Jacob Steinhardt , and Yi Ma. 2020. Rethinking Bias-Variance Trade-off for Generalization of Neural Networks. arXiv preprint arXiv:2002.11328 ( 2020 ). Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. 2020. Rethinking Bias-Variance Trade-off for Generalization of Neural Networks. arXiv preprint arXiv:2002.11328 (2020)."},{"volume-title":"Wide residual networks. arXiv preprint arXiv:1605.07146","year":"2016","author":"Zagoruyko Sergey","key":"e_1_3_2_1_31_1","unstructured":"Sergey Zagoruyko and Nikos Komodakis . 2016. Wide residual networks. arXiv preprint arXiv:1605.07146 ( 2016 ). Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)."},{"key":"e_1_3_2_1_32_1","unstructured":"Chiyuan Zhang Samy Bengio Moritz Hardt Benjamin Recht and Oriol Vinyals. 2016. Understanding deep learning requires rethinking generalization. arxiv: 1611.03530 [cs.LG] Chiyuan Zhang Samy Bengio Moritz Hardt Benjamin Recht and Oriol Vinyals. 2016. Understanding deep learning requires rethinking generalization. arxiv: 1611.03530 [cs.LG]"}],"event":{"name":"CIKM '21: The 30th ACM International Conference on Information and Knowledge Management","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web","SIGIR ACM Special Interest Group on Information Retrieval"],"location":"Virtual Event Queensland Australia","acronym":"CIKM '21"},"container-title":["Proceedings of the 30th ACM International Conference on Information & Knowledge Management"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3459637.3482142","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T00:00:10Z","timestamp":1673222410000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3459637.3482142"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10,26]]},"references-count":32,"alternative-id":["10.1145\/3459637.3482142","10.1145\/3459637"],"URL":"https:\/\/doi.org\/10.1145\/3459637.3482142","relation":{},"subject":[],"published":{"date-parts":[[2021,10,26]]},"assertion":[{"value":"2021-10-30","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}