{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:57:52Z","timestamp":1730321872812,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":32,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,11,8]]},"DOI":"10.1145\/3373419.3373462","type":"proceedings-article","created":{"date-parts":[[2020,1,24]],"date-time":"2020-01-24T10:52:56Z","timestamp":1579863176000},"page":"97-100","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["The Downscaling of the SMOS Global Sea Surface Salinity Product Based on MODIS Data Using a Deep Convolution Network Approach"],"prefix":"10.1145","author":[{"given":"Qixin","family":"Liu","sequence":"first","affiliation":[{"name":"School of Land Science and Technology, China University of Geosciences, Beijing, China"}]},{"given":"Linlin","family":"Xu","sequence":"additional","affiliation":[{"name":"School of Land Science and Technology, China University of Geosciences, Beijing, China"}]},{"given":"Zhiwen","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Land Science and Technology, China University of Geosciences, Beijing, China"}]}],"member":"320","published-online":{"date-parts":[[2020,1,24]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.5194\/bg-8-1881-2011"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.5194\/bg-10-7219-2013"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2013.04.016"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2009.2033096"},{"volume-title":"Sea surface salinity structure of the meandering gulf stream revealed by smos sensor. Geophysical Research Letters, 41(9)","year":"2014","author":"Reul N.","key":"e_1_3_2_1_5_1","unstructured":"Reul , N. , Chapron , B. , Lee , T. , Donlon , C. , Boutin , J. , & Alory , G. ( 2014 ). Sea surface salinity structure of the meandering gulf stream revealed by smos sensor. Geophysical Research Letters, 41(9) . Reul, N., Chapron, B., Lee, T., Donlon, C., Boutin, J., & Alory, G. (2014). Sea surface salinity structure of the meandering gulf stream revealed by smos sensor. Geophysical Research Letters, 41(9)."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2012.2188410"},{"volume-title":"The salinity retrieval algorithms for the nasa aquarius version 5 and smap version 3 releases. Remote Sensing, 10(7)","year":"2018","author":"Meissner T.","key":"e_1_3_2_1_7_1","unstructured":"Meissner , T. , Wentz , F. J. , & Vine , D. M. L. ( 2018 ). The salinity retrieval algorithms for the nasa aquarius version 5 and smap version 3 releases. Remote Sensing, 10(7) . Meissner, T., Wentz, F. J., & Vine, D. M. L. (2018). The salinity retrieval algorithms for the nasa aquarius version 5 and smap version 3 releases. Remote Sensing, 10(7)."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2007.898092"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2017.09.004"},{"volume-title":"IEEE International Conference on Signal & Image Processing Applications.","year":"2010","author":"Marghany M.","key":"e_1_3_2_1_10_1","unstructured":"Marghany , M. ( 2010 ). Least square algorithm for sea surface salinity retrieving from MODIS satellite data . IEEE International Conference on Signal & Image Processing Applications. Marghany, M. (2010). Least square algorithm for sea surface salinity retrieving from MODIS satellite data. IEEE International Conference on Signal & Image Processing Applications."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/IGARSS.2011.6049526"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2008.915547"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2008.07.036"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecss.2017.01.008"},{"issue":"4","key":"e_1_3_2_1_15_1","first-page":"229","article-title":"Artificial neural network and random forest approaches for modeling of sea surface salinity","volume":"3","author":"Liu M.","year":"2013","unstructured":"Liu , M. , Liu , X. , Jiang , J. , & Xia , X. ( 2013 ). Artificial neural network and random forest approaches for modeling of sea surface salinity . Int. J. Remote Sens. Appl , 3 ( 4 ), 229 -- 234 . Liu, M., Liu, X., Jiang, J., & Xia, X. (2013). Artificial neural network and random forest approaches for modeling of sea surface salinity. Int. J. Remote Sens. Appl, 3(4), 229--234.","journal-title":"Int. J. Remote Sens. Appl"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1080\/01431161.2018.1445880"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jag.2012.04.012"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2003.1203207"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1093\/comjnl\/bxm028"},{"volume-title":"Accelerating the Super-Resolution Convolutional Neural Network. Computer Vision - ECCV","year":"2016","author":"Chao D.","key":"e_1_3_2_1_20_1","unstructured":"Chao , D. , Chen , C. L. , & Tang , X. ( 2016 ). Accelerating the Super-Resolution Convolutional Neural Network. Computer Vision - ECCV 2016. Chao, D., Chen, C. L., & Tang, X. (2016). Accelerating the Super-Resolution Convolutional Neural Network. Computer Vision - ECCV 2016."},{"volume-title":"A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics","year":"2017","author":"Peng J.","key":"e_1_3_2_1_21_1","unstructured":"Peng , J. , Loew , A. , Merlin , O. , & Verhoest , N. E. C. ( 2017 ). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics . Peng, J., Loew, A., Merlin, O., & Verhoest, N. E. C. (2017). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics."},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2011.2120615"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11269-013-0337-9"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.3390\/rs8080655"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1002\/joc.1529"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.advwatres.2007.07.005"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2013.03.023"},{"issue":"5","key":"e_1_3_2_1_28_1","first-page":"2829","article-title":"Artificial intelligence: a modern approach","volume":"263","author":"Russell S. J.","year":"2010","unstructured":"Russell , S. J. , & Norvig , P. ( 2010 ). Artificial intelligence: a modern approach . Applied Mechanics & Materials , 263 ( 5 ), 2829 -- 2833 . Russell, S. J., & Norvig, P. (2010). Artificial intelligence: a modern approach. Applied Mechanics & Materials, 263(5), 2829--2833.","journal-title":"Applied Mechanics & Materials"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"volume-title":"International Conference on Radar.","year":"2018","author":"Al-Saffar A. A. M.","key":"e_1_3_2_1_30_1","unstructured":"Al-Saffar , A. A. M. , Hai , T. , & Talab , M. A. ( 2018 ). Review of deep convolution neural network in image classification . International Conference on Radar. Al-Saffar, A. A. M., Hai, T., & Talab, M. A. (2018). Review of deep convolution neural network in image classification. International Conference on Radar."},{"volume-title":"Deep image prior","year":"2017","author":"Ulyanov D.","key":"e_1_3_2_1_31_1","unstructured":"Ulyanov , D. , Vedaldi , A. , & Lempitsky , V. ( 2017 ). Deep image prior . Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Deep image prior."},{"volume-title":"Deep Learning for Ocean Remote Sensing: An Application of Convolutional Neural Networks for Super-Resolution on Satellite-Derived SST Data. Workshop on Pattern Recognition in Remote Sensing. IEEE.","year":"2017","author":"Aur\u00e9lien Ducournau","key":"e_1_3_2_1_32_1","unstructured":"Aur\u00e9lien Ducournau , & Fablet, R. ( 2017 ). Deep Learning for Ocean Remote Sensing: An Application of Convolutional Neural Networks for Super-Resolution on Satellite-Derived SST Data. Workshop on Pattern Recognition in Remote Sensing. IEEE. Aur\u00e9lien Ducournau, & Fablet, R. (2017). Deep Learning for Ocean Remote Sensing: An Application of Convolutional Neural Networks for Super-Resolution on Satellite-Derived SST Data. Workshop on Pattern Recognition in Remote Sensing. IEEE."}],"event":{"name":"ICAIP 2019: 2019 3rd International Conference on Advances in Image Processing","sponsor":["Southwest Jiaotong University"],"location":"Chengdu China","acronym":"ICAIP 2019"},"container-title":["Proceedings of the 2019 3rd International Conference on Advances in Image Processing"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3373419.3373462","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,7]],"date-time":"2023-03-07T23:28:56Z","timestamp":1678231736000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3373419.3373462"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,11,8]]},"references-count":32,"alternative-id":["10.1145\/3373419.3373462","10.1145\/3373419"],"URL":"https:\/\/doi.org\/10.1145\/3373419.3373462","relation":{},"subject":[],"published":{"date-parts":[[2019,11,8]]},"assertion":[{"value":"2020-01-24","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}