{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T10:00:30Z","timestamp":1722938430761},"publisher-location":"New York, New York, USA","reference-count":14,"publisher":"ACM Press","license":[{"start":{"date-parts":[[2019,12,4]],"date-time":"2019-12-04T00:00:00Z","timestamp":1575417600000},"content-version":"vor","delay-in-days":337,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1145\/3368926.3369690","type":"proceedings-article","created":{"date-parts":[[2019,12,20]],"date-time":"2019-12-20T08:30:11Z","timestamp":1576830611000},"page":"43-48","source":"Crossref","is-referenced-by-count":0,"title":["BK.Synapse"],"prefix":"10.1145","author":[{"given":"Dinh Viet","family":"Sang","sequence":"first","affiliation":[{"name":"Hanoi University of Science and Technology, Hanoi, Vietnam"}]},{"given":"Phan Ngoc","family":"Lan","sequence":"additional","affiliation":[{"name":"Hanoi University of Science and Technology, Hanoi, Vietnam"}]}],"member":"320","reference":[{"key":"key-10.1145\/3368926.3369690-1","unstructured":"Overview - icdar 2019 robust reading challenge on scanned receipts ocr and information extraction. https:\/\/rrc.cvc.uab.es\/?ch=13."},{"key":"key-10.1145\/3368926.3369690-2","unstructured":"M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265--283, 2016."},{"key":"key-10.1145\/3368926.3369690-3","unstructured":"S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014."},{"key":"key-10.1145\/3368926.3369690-4","unstructured":"M. P. Forum. Mpi: A message-passing interface standard. Technical report, Knoxville, TN, USA, 1994."},{"key":"key-10.1145\/3368926.3369690-5","unstructured":"M. Grinberg. Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 1st edition, 2014."},{"key":"key-10.1145\/3368926.3369690-6","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770--778, 2016.","DOI":"10.1109\/CVPR.2016.90"},{"key":"key-10.1145\/3368926.3369690-7","doi-asserted-by":"crossref","unstructured":"Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675--678. ACM, 2014.","DOI":"10.1145\/2647868.2654889"},{"key":"key-10.1145\/3368926.3369690-8","unstructured":"N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a tensor processing unit. In 2017 ACM\/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), pages 1--12. IEEE, 2017."},{"key":"key-10.1145\/3368926.3369690-9","unstructured":"T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017."},{"key":"key-10.1145\/3368926.3369690-10","unstructured":"A. Paszke, S. Gross, S. Chintala, and G. Chanan. Pytorch: Tensors and dynamic neural networks in python with strong gpu acceleration. PyTorch: Tensors and dynamic neural networks in Python with strong GPU acceleration, 2017."},{"key":"key-10.1145\/3368926.3369690-11","doi-asserted-by":"crossref","unstructured":"R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised learning using graphics processors. In Proceedings of the 26th annual international conference on machine learning, pages 873--880. ACM, 2009.","DOI":"10.1145\/1553374.1553486"},{"key":"key-10.1145\/3368926.3369690-12","doi-asserted-by":"crossref","unstructured":"J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779--788, 2016.","DOI":"10.1109\/CVPR.2016.91"},{"key":"key-10.1145\/3368926.3369690-13","unstructured":"A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep learning in tensorflow. CoRR, abs\/1802.05799, 2018."},{"key":"key-10.1145\/3368926.3369690-14","unstructured":"L. Yeager, J. Bernauer, A. Gray, and M. Houston. Digits: the deep learning gpu training system. In ICML 2015 AutoML Workshop, 2015."}],"event":{"number":"10","sponsor":["SOICT, School of Information and Communication Technology - HUST","NAFOSTED, The National Foundation for Science and Technology Development"],"acronym":"SoICT 2019","name":"the Tenth International Symposium","start":{"date-parts":[[2019,12,4]]},"location":"Hanoi, Ha Long Bay, Viet Nam","end":{"date-parts":[[2019,12,6]]}},"container-title":["Proceedings of the Tenth International Symposium on Information and Communication Technology - SoICT 2019"],"original-title":[],"link":[{"URL":"http:\/\/dl.acm.org\/ft_gateway.cfm?id=3369690&ftid=2101251&dwn=1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,12,20]],"date-time":"2019-12-20T08:35:32Z","timestamp":1576830932000},"score":1,"resource":{"primary":{"URL":"http:\/\/dl.acm.org\/citation.cfm?doid=3368926.3369690"}},"subtitle":["A scalable distributed training framework for deep learning"],"proceedings-subject":"Information and Communication Technology","short-title":[],"issued":{"date-parts":[[2019]]},"references-count":14,"URL":"https:\/\/doi.org\/10.1145\/3368926.3369690","relation":{},"subject":[],"published":{"date-parts":[[2019]]}}}