iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1145/3292500.3330667
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:42:05Z","timestamp":1730320925748,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":38,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,7,25]],"date-time":"2019-07-25T00:00:00Z","timestamp":1564012800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,7,25]]},"DOI":"10.1145\/3292500.3330667","type":"proceedings-article","created":{"date-parts":[[2019,7,26]],"date-time":"2019-07-26T09:17:26Z","timestamp":1564132646000},"page":"2448-2458","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":34,"title":["Machine Learning at Microsoft with ML.NET"],"prefix":"10.1145","author":[{"given":"Zeeshan","family":"Ahmed","sequence":"first","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Saeed","family":"Amizadeh","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Mikhail","family":"Bilenko","sequence":"additional","affiliation":[{"name":"Yandex, Moscow, Russian Fed."}]},{"given":"Rogan","family":"Carr","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Wei-Sheng","family":"Chin","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Yael","family":"Dekel","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Xavier","family":"Dupre","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Vadim","family":"Eksarevskiy","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Senja","family":"Filipi","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Tom","family":"Finley","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Abhishek","family":"Goswami","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Monte","family":"Hoover","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Scott","family":"Inglis","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Matteo","family":"Interlandi","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Najeeb","family":"Kazmi","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Gleb","family":"Krivosheev","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Pete","family":"Luferenko","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Ivan","family":"Matantsev","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Sergiy","family":"Matusevych","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Shahab","family":"Moradi","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Gani","family":"Nazirov","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Justin","family":"Ormont","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Gal","family":"Oshri","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Artidoro","family":"Pagnoni","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Jignesh","family":"Parmar","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Prabhat","family":"Roy","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Mohammad Zeeshan","family":"Siddiqui","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Markus","family":"Weimer","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Shauheen","family":"Zahirazami","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]},{"given":"Yiwen","family":"Zhu","sequence":"additional","affiliation":[{"name":"Microsoft, Redmond, WA, USA"}]}],"member":"320","published-online":{"date-parts":[[2019,7,25]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/1273496.1273501"},{"key":"e_1_3_2_1_2_1","unstructured":"Boost. Python. 2019. http:\/\/wiki.python.org\/moi\/boost.python. (2019). Boost. Python. 2019. http:\/\/wiki.python.org\/moi\/boost.python. (2019)."},{"key":"e_1_3_2_1_3_1","unstructured":"Caffe2. 2018. http:\/\/caffe2.ai\/. (2018). Caffe2. 2018. http:\/\/caffe2.ai\/. (2018)."},{"key":"e_1_3_2_1_4_1","unstructured":"Criteo. 2014. Kaggle Challenge. (2014). http:\/\/labs.criteo.com\/2014\/02\/kaggle-display-advertising-challenge-dataset\/ Criteo. 2014. Kaggle Challenge. (2014). http:\/\/labs.criteo.com\/2014\/02\/kaggle-display-advertising-challenge-dataset\/"},{"key":"e_1_3_2_1_5_1","unstructured":"Joblib Documentation. 2018. http:\/\/media.readthedocs.org\/pdf\/joblib\/latest\/joblib.pdf . (2018). Joblib Documentation. 2018. http:\/\/media.readthedocs.org\/pdf\/joblib\/latest\/joblib.pdf . (2018)."},{"volume-title":"High-Performance ML Serving. In Workshop on ML Systems at NIPS.","author":"Christopher","key":"e_1_3_2_1_6_1"},{"volume-title":"Clipper: A Low-Latency Online Prediction Serving System. In NSDI","year":"2017","author":"Daniel","key":"e_1_3_2_1_7_1"},{"key":"e_1_3_2_1_8_1","unstructured":"Martin Abadi et al. 2016. TensorFlow: A system for large-scale machine learning. In OSDI 16. 265--283. Martin Abadi et al. 2016. TensorFlow: A system for large-scale machine learning. In OSDI 16. 265--283."},{"key":"e_1_3_2_1_9_1","unstructured":"Tianqi Chen et al. 2015. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. CoRRabs\/1512.01274 (2015). Tianqi Chen et al. 2015. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. CoRRabs\/1512.01274 (2015)."},{"key":"e_1_3_2_1_10_1","first-page":"1","article-title":"MLlib: Machine Learning in Apache Spark","volume":"17","author":"Xiangrui Meng","year":"2016","journal-title":"JMLR"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1013203451"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/69.273032"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"crossref","unstructured":"H2O. 2019. https:\/\/github.com\/h2oai\/h2o-3. (2019). H2O. 2019. https:\/\/github.com\/h2oai\/h2o-3. (2019).","DOI":"10.1016\/S1365-6937(19)30292-8"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/2872427.2883037"},{"key":"e_1_3_2_1_15_1","unstructured":"Jupyter. 2018. http:\/\/jupyter.org\/. (2018). Jupyter. 2018. http:\/\/jupyter.org\/. (2018)."},{"key":"e_1_3_2_1_16_1","first-page":"3146","article-title":"Light GBM: A Highly Efficient Gradient Boosting Decision Tree","volume":"2017","author":"Guolin Ke","year":"2017","journal-title":"NIPS"},{"key":"e_1_3_2_1_17_1","first-page":"46","article-title":"From the Edge to the Cloud: Model Serving in ML.","volume":"41","author":"Lee Yunseong","year":"2018","journal-title":"NET. IEEE Data Eng. Bull."},{"key":"e_1_3_2_1_18_1","first-page":"611","article-title":"PRETZEL","volume":"2018","author":"Lee Yunseong","year":"2018","journal-title":"In OSDI"},{"key":"e_1_3_2_1_19_1","unstructured":"Matplotlib. 2018. https:\/\/matplotlib.org\/. (2018). Matplotlib. 2018. https:\/\/matplotlib.org\/. (2018)."},{"volume-title":"pandas: a Foundational Python Library for Data Analysis and Statistics. (01","year":"2011","author":"Mckinney Wes","key":"e_1_3_2_1_20_1"},{"key":"e_1_3_2_1_21_1","unstructured":"Michelangelo. 2018. http:\/\/eng.uber.com\/michelangelo\/. (2018). Michelangelo. 2018. http:\/\/eng.uber.com\/michelangelo\/. (2018)."},{"volume-title":"Distributed Representations of Words and Phrases and Their Compositionality. In NIPS","year":"2013","author":"Tomas","key":"e_1_3_2_1_22_1"},{"key":"e_1_3_2_1_23_1","unstructured":"ML.NET. 2019. https:\/\/github.com\/dotnet\/machinelearning. (2019). ML.NET. 2019. https:\/\/github.com\/dotnet\/machinelearning. (2019)."},{"key":"e_1_3_2_1_24_1","unstructured":"NimbusML. 2019. https:\/\/github.com\/Microsoft\/NimbusML. (2019). NimbusML. 2019. https:\/\/github.com\/Microsoft\/NimbusML. (2019)."},{"volume-title":"https:\/\/www.kaggle.com\/surveys\/2017\/","year":"2017","author":"The State of Data Science and Machine Learning. 2017.","key":"e_1_3_2_1_25_1"},{"key":"e_1_3_2_1_26_1","unstructured":"Bureau of Transportation Statistics. 2018. Flight Delay Dataset. (2018). https:\/\/www.transtats.bts.gov\/Fields.asp?Table_ID=236 Bureau of Transportation Statistics. 2018. Flight Delay Dataset. (2018). https:\/\/www.transtats.bts.gov\/Fields.asp?Table_ID=236"},{"volume-title":"Scikit-learn: Machine Learning in Python. JMLR 12(Nov.","year":"2011","author":"Fabian Pedregosa","key":"e_1_3_2_1_27_1"},{"key":"e_1_3_2_1_28_1","unstructured":"PyTorch. 2018. https:\/\/pytorch.org\/. (2018). PyTorch. 2018. https:\/\/pytorch.org\/. (2018)."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2945397"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"crossref","unstructured":"Shai Shalev-Shwartz etal 2011. Pegasos: primal estimated sub-gradient solver for SVM. Mathematical Programming 127 1 (01 Mar 2011) 3--30. Shai Shalev-Shwartz et al. 2011. Pegasos: primal estimated sub-gradient solver for SVM. Mathematical Programming 127 1 (01 Mar 2011) 3--30.","DOI":"10.1007\/s10107-010-0420-4"},{"key":"e_1_3_2_1_31_1","first-page":"553","article-title":"C-store","volume":"2005","author":"Mike Stonebraker","year":"2005","journal-title":"A Column-oriented DBMS. In VLDB"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/2783258.2783412"},{"key":"e_1_3_2_1_33_1","unstructured":"Transmogrif AI. 2018. https:\/\/transmogrif.ai\/. (2018). Transmogrif AI. 2018. https:\/\/transmogrif.ai\/. (2018)."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/MCSE.2011.37"},{"volume-title":"Making Classical Machine Learning Pipelines Differentiable: A Neural Translation Approach. SysML Workshop at NIPS(2018)","author":"Gyeong-In","key":"e_1_3_2_1_35_1"},{"volume-title":"NSDI","year":"2012","author":"Zaharia Matei","key":"e_1_3_2_1_36_1"},{"key":"e_1_3_2_1_37_1","unstructured":"Zeppelin. 2018. https:\/\/zeppelin.apache.org\/. (2018). Zeppelin. 2018. https:\/\/zeppelin.apache.org\/. (2018)."},{"key":"e_1_3_2_1_38_1","unstructured":"Martin Zinkevich. 2019. Rules of Machine Learning: Best Practices for MLEngineering. (2019). Martin Zinkevich. 2019. Rules of Machine Learning: Best Practices for MLEngineering. (2019)."}],"event":{"name":"KDD '19: The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data"],"location":"Anchorage AK USA","acronym":"KDD '19"},"container-title":["Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3292500.3330667","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T07:03:55Z","timestamp":1673420635000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3292500.3330667"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7,25]]},"references-count":38,"alternative-id":["10.1145\/3292500.3330667","10.1145\/3292500"],"URL":"https:\/\/doi.org\/10.1145\/3292500.3330667","relation":{},"subject":[],"published":{"date-parts":[[2019,7,25]]},"assertion":[{"value":"2019-07-25","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}