iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1145/3289602.3293913
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T07:54:45Z","timestamp":1725954885191},"publisher-location":"New York, NY, USA","reference-count":31,"publisher":"ACM","license":[{"start":{"date-parts":[[2020,2,20]],"date-time":"2020-02-20T00:00:00Z","timestamp":1582156800000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100000028","name":"Semiconductor Research Corporation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000028","id-type":"DOI","asserted-by":"publisher"}]},{"name":"CRISP"},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["1730158, 1527034"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,2,20]]},"DOI":"10.1145\/3289602.3293913","type":"proceedings-article","created":{"date-parts":[[2019,2,22]],"date-time":"2019-02-22T22:12:13Z","timestamp":1550873533000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":58,"title":["F5-HD"],"prefix":"10.1145","author":[{"given":"Sahand","family":"Salamat","sequence":"first","affiliation":[{"name":"University of California, San Diego, La Jolla, CA, USA"}]},{"given":"Mohsen","family":"Imani","sequence":"additional","affiliation":[{"name":"University of California, San Diego, la Jolla, CA, USA"}]},{"given":"Behnam","family":"Khaleghi","sequence":"additional","affiliation":[{"name":"University of California, San Diego, La Jolla, CA, USA"}]},{"given":"Tajana","family":"Rosing","sequence":"additional","affiliation":[{"name":"University of California, San Diego, La Jolla, CA, USA"}]}],"member":"320","published-online":{"date-parts":[[2019,2,20]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1007\/s12559-009-9009-8"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/ALLERTON.2014.7028470"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/2934583.2934624"},{"key":"e_1_3_2_1_4_1","first-page":"1","volume-title":"Automation Test in Europe Conference Exhibition (DATE)","author":"Najafabadi F. R.","year":"2016","unstructured":"F. R. Najafabadi , A. Rahimi , P. Kanerva , and J. M. Rabaey , \" Hyperdimensional computing for text classification,\" in Design , Automation Test in Europe Conference Exhibition (DATE) , University Booth , pp. 1 -- 1 , 2016 . F. R. Najafabadi, A. Rahimi, P. Kanerva, and J. M. Rabaey, \"Hyperdimensional computing for text classification,\" in Design, Automation Test in Europe Conference Exhibition (DATE), University Booth, pp. 1--1, 2016."},{"key":"e_1_3_2_1_5_1","volume-title":"Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns, \"IEEE transactions on neural networks and learning systems","author":"R\u00e4s\u00e4nen O. J.","unstructured":"O. J. R\u00e4s\u00e4nen and J. P. Saarinen , \" Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns, \"IEEE transactions on neural networks and learning systems , vol. 27 , no. 9, pp. 1878--1889, 2016. O. J. R\u00e4s\u00e4nen and J. P. Saarinen, \"Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns, \"IEEE transactions on neural networks and learning systems, vol. 27, no. 9, pp. 1878--1889, 2016."},{"key":"e_1_3_2_1_6_1","first-page":"1","volume-title":"2017 IEEE International Conference on","author":"Imani M.","year":"2017","unstructured":"M. Imani , D. Kong , A. Rahimi , and T. Rosing , \" Voicehd: Hyperdimensional computing for efficient speech recognition,\" in Rebooting Computing (ICRC) , 2017 IEEE International Conference on , pp. 1 -- 8 , IEEE, 2017 . M. Imani, D. Kong, A. Rahimi, and T. Rosing, \"Voicehd: Hyperdimensional computing for efficient speech recognition,\" in Rebooting Computing (ICRC), 2017 IEEE International Conference on, pp. 1--8, IEEE, 2017."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/3195970.3196096"},{"issue":"99","key":"e_1_3_2_1_8_1","first-page":"1","article-title":"Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns","author":"Rasanen O.","year":"2015","unstructured":"O. Rasanen and J. Saarinen , \" Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns ,\" IEEE Transactions on NeuralNetworks and Learning Systems , vol. PP, no. 99 , pp. 1 -- 12 , 2015 . O. Rasanen and J. Saarinen, \"Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns,\"IEEE Transactions on NeuralNetworks and Learning Systems, vol. PP, no. 99, pp. 1--12, 2015.","journal-title":"IEEE Transactions on NeuralNetworks and Learning Systems"},{"key":"e_1_3_2_1_9_1","volume-title":"Language geometry using random indexing,\"QuantumInteraction 2016 Conference Proceedings","author":"Joshi A.","unstructured":"A. Joshi , J. Halseth , and P. Kanerva , \" Language geometry using random indexing,\"QuantumInteraction 2016 Conference Proceedings , In press . A. Joshi, J. Halseth, and P. Kanerva, \"Language geometry using random indexing,\"QuantumInteraction 2016 Conference Proceedings, In press."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/3020078.3021744"},{"key":"e_1_3_2_1_11_1","first-page":"1","volume-title":"2018 IEEE InternationalConference on","author":"Salamat S.","year":"2018","unstructured":"S. Salamat , M. Imani , S. Gupta , and T. Rosing , \" Rnsnet: In-memory neural network acceleration using residue number system,\" in Rebooting Computing (ICRC) , 2018 IEEE InternationalConference on , pp. 1 -- 10 , IEEE, 2018 . S. Salamat, M. Imani, S. Gupta, and T. Rosing, \"Rnsnet: In-memory neural network acceleration using residue number system,\" in Rebooting Computing (ICRC), 2018 IEEE InternationalConference on, pp. 1--10, IEEE, 2018."},{"key":"e_1_3_2_1_12_1","first-page":"1","volume-title":"IEEE International Conference on","author":"Rahimi A.","year":"2016","unstructured":"A. Rahimi , S. Benatti , P. Kanerva , L. Benini , and J. M. Rabaey , \" Hyperdimensional biosignal processing: A case study for EMG-based hand gesture recognition,\" in Rebooting Computing(ICRC) , IEEE International Conference on , pp. 1 -- 8 , IEEE, 2016 . A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, \"Hyperdimensional biosignal processing: A case study for EMG-based hand gesture recognition,\" in Rebooting Computing(ICRC), IEEE International Conference on, pp. 1--8, IEEE, 2016."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/3195970.3196060"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/2.839320"},{"key":"e_1_3_2_1_15_1","first-page":"1","volume-title":"2018 IEEE International Conference on","author":"Salamat S.","year":"2018","unstructured":"S. Salamat , M. R. Azarbad , and B. Alizadeh , \" Improve high level synthesis for multi-dimensional nested loops using reshaping and vectorization methods for multi-level non-rectangular nested loop,\" in Rebooting Computing (ICRC) , 2018 IEEE International Conference on , pp. 1 -- 10 , IEEE, 2018 . S. Salamat, M. R. Azarbad, and B. Alizadeh, \"Improve high level synthesis for multi-dimensional nested loops using reshaping and vectorization methods for multi-level non-rectangular nested loop,\" in Rebooting Computing (ICRC), 2018 IEEE International Conference on, pp. 1--10, IEEE, 2018."},{"key":"e_1_3_2_1_16_1","volume-title":"Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory, \"arXiv preprint arXiv:1807.08583","author":"Schmuck M.","year":"2018","unstructured":"M. Schmuck , L. Benini , and A. Rahimi , \" Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory, \"arXiv preprint arXiv:1807.08583 , 2018 . M. Schmuck, L. Benini, and A. Rahimi, \"Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory, \"arXiv preprint arXiv:1807.08583, 2018."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/MDAT.2017.2740839"},{"key":"e_1_3_2_1_18_1","first-page":"271","article-title":"Hdna: Energy-efficient dna sequencing using hyperdimensional computing","author":"Imani M.","year":"2018","unstructured":"M. Imani , \" Hdna: Energy-efficient dna sequencing using hyperdimensional computing ,\" in BHI , pp. 271 -- 274 , IEEE, 2018 . M. Imani et al., \"Hdna: Energy-efficient dna sequencing using hyperdimensional computing,\" in BHI, pp. 271--274, IEEE, 2018.","journal-title":"BHI"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1145\/3277593.3277617"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3287624.3287667"},{"key":"e_1_3_2_1_21_1","volume-title":"A binary learning framework for hyperdimensional computing,\" in DATE","author":"Imani M.","year":"2019","unstructured":"M. Imani , \" A binary learning framework for hyperdimensional computing,\" in DATE ,IEEE\/ACM, 2019 .{23} M. Imani et al., \"Hdcluster: An accurate clustering using brain-inspired high-dimensional computing,\" in DATE, IEEE\/ACM , 2019. M. Imani et al., \"A binary learning framework for hyperdimensional computing,\" in DATE,IEEE\/ACM, 2019.{23} M. Imani et al., \"Hdcluster: An accurate clustering using brain-inspired high-dimensional computing,\" in DATE, IEEE\/ACM, 2019."},{"key":"e_1_3_2_1_22_1","first-page":"492","volume-title":"2018 IEEEInternational","author":"Wu T. F.","year":"2018","unstructured":"T. F. Wu , H. Li , P.-C. Huang , A. Rahimi , J. M. Rabaey , H.-S. P. Wong , M. M. Shulaker , and S. Mitra , \" Brain-inspired computing exploiting carbon nanotube fets and resistive ram: Hyperdimensional computing case study,\" inSolid-State Circuits Conference-(ISSCC) , 2018 IEEEInternational , pp. 492 -- 494 , IEEE, 2018 . T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, J. M. Rabaey, H.-S. P. Wong, M. M. Shulaker, and S. Mitra, \"Brain-inspired computing exploiting carbon nanotube fets and resistive ram: Hyperdimensional computing case study,\" inSolid-State Circuits Conference-(ISSCC), 2018 IEEEInternational, pp. 492--494, IEEE, 2018."},{"key":"e_1_3_2_1_23_1","first-page":"16","volume-title":"2016 IEEE International","author":"Li H.","year":"2016","unstructured":"H. Li vrram in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language recognition,\" in electron devices Meeting (IEDM) , 2016 IEEE International , pp. 16 -- 11 , IEEE, 2016 . H. Li et al., \"Hyperdimensional computing with 3d vrram in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language recognition,\" in electron devices Meeting (IEDM), 2016 IEEE International, pp. 16--1, IEEE, 2016."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/3240765.3240811"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/MM.2017.19"},{"key":"e_1_3_2_1_26_1","unstructured":"\"Xilinx power estimator user guide.\" User Guide June 2017. \"Xilinx power estimator user guide.\" User Guide June 2017."},{"key":"e_1_3_2_1_27_1","unstructured":"T. Feist \"Vivado design suite \"White Paper vol. 5 2012. T. Feist \"Vivado design suite \"White Paper vol. 5 2012."},{"key":"e_1_3_2_1_28_1","unstructured":"\"Amd.\" http:\/\/developer.amd.com\/tools- and- sdks\/opencl- zone\/codexl\/. \"Amd.\" http:\/\/developer.amd.com\/tools- and- sdks\/opencl- zone\/codexl\/."},{"key":"e_1_3_2_1_29_1","unstructured":"\"Uci machine learning repository.\" http:\/\/archive.ics.uci.edu\/ml\/datasets\/ISOLET. \"Uci machine learning repository.\" http:\/\/archive.ics.uci.edu\/ml\/datasets\/ISOLET."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/2413097.2413148"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-014-0733-5"}],"event":{"name":"FPGA '19: The 2019 ACM\/SIGDA International Symposium on Field-Programmable Gate Arrays","location":"Seaside CA USA","acronym":"FPGA '19","sponsor":["SIGDA ACM Special Interest Group on Design Automation"]},"container-title":["Proceedings of the 2019 ACM\/SIGDA International Symposium on Field-Programmable Gate Arrays"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3289602.3293913","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3289602.3293913","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,31]],"date-time":"2023-05-31T22:28:52Z","timestamp":1685572132000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3289602.3293913"}},"subtitle":["Fast Flexible FPGA-based Framework for Refreshing Hyperdimensional Computing"],"short-title":[],"issued":{"date-parts":[[2019,2,20]]},"references-count":31,"alternative-id":["10.1145\/3289602.3293913","10.1145\/3289602"],"URL":"http:\/\/dx.doi.org\/10.1145\/3289602.3293913","relation":{},"subject":[],"published":{"date-parts":[[2019,2,20]]},"assertion":[{"value":"2019-02-20","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}