iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1145/3230668
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T05:54:10Z","timestamp":1726206850611},"reference-count":71,"publisher":"Association for Computing Machinery (ACM)","issue":"6","license":[{"start":{"date-parts":[[2019,8,31]],"date-time":"2019-08-31T00:00:00Z","timestamp":1567209600000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61502091"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"crossref","award":["N161604001 and N150408001"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/100000001","name":"NSF","doi-asserted-by":"publisher","award":["IIS-1563950, IIS-1447566, IIS-1447574, IIS-1422557, CCF-1451986, and CNS- 1314560"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Knowl. Discov. Data"],"published-print":{"date-parts":[[2018,12,31]]},"abstract":"Alzheimer\u2019s disease (AD), the most common type of dementia, not only imposes a huge financial burden on the health care system, but also a psychological and emotional burden on patients and their families. There is thus an urgent need to infer trajectories of cognitive performance over time and identify biomarkers predictive of the progression. In this article, we propose the multi-task learning with fused Laplacian sparse group lasso model, which can identify biomarkers closely related to cognitive measures due to its sparsity-inducing property, and model the disease progression with a general weighted (undirected) dependency graphs among the tasks. An efficient alternative directions method of multipliers based optimization algorithm is derived to solve the proposed non-smooth objective formulation. The effectiveness of the proposed model is demonstrated by its superior prediction performance over multiple state-of-the-art methods and accurate identification of compact sets of cognition-relevant imaging biomarkers that are consistent with prior medical studies.<\/jats:p>","DOI":"10.1145\/3230668","type":"journal-article","created":{"date-parts":[[2018,9,4]],"date-time":"2018-09-04T12:37:30Z","timestamp":1536064650000},"page":"1-35","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":20,"title":["Modeling Alzheimer\u2019s Disease Progression with Fused Laplacian Sparse Group Lasso"],"prefix":"10.1145","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2274-6180","authenticated-orcid":false,"given":"Xiaoli","family":"Liu","sequence":"first","affiliation":[{"name":"Northeastern University and University of Minnesota, Shenyang, China"}]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[{"name":"Northeastern University, Shenyang, China"}]},{"given":"Andr\u00e9 R.","family":"Gon\u00e7alves","sequence":"additional","affiliation":[{"name":"Lawrence Livermore National Laboratory, CA"}]},{"given":"Dazhe","family":"Zhao","sequence":"additional","affiliation":[{"name":"Northeastern University, Shenyang, China"}]},{"given":"Arindam","family":"Banerjee","sequence":"additional","affiliation":[{"name":"University of Minnesota, Twin Cities"}]}],"member":"320","published-online":{"date-parts":[[2018,8,31]]},"reference":[{"key":"e_1_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1097\/01.wad.0000213857.89613.10"},{"key":"e_1_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-007-5040-8"},{"key":"e_1_2_1_3_1","volume-title":"2016 Alzheimer\u2019s disease facts and figures. Alzheimer\u2019s Dementia. 12, 4","author":"Alzheimer\u2019s Association","year":"2016","unstructured":"Alzheimer\u2019s Association . 2016. 2016 Alzheimer\u2019s disease facts and figures. Alzheimer\u2019s Dementia. 12, 4 ( 2016 ), 459--509. Alzheimer\u2019s Association. 2016. 2016 Alzheimer\u2019s disease facts and figures. Alzheimer\u2019s Dementia. 12, 4 (2016), 459--509."},{"key":"e_1_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1561\/2200000015"},{"key":"e_1_2_1_5_1","unstructured":"N. L. Batsch and M. S. Mittelman. 2015. World Alzheimer report 2012. Overcoming the Stigma of Dementia. Alzheimer\u2019s Disease International (ADI) 5 (2015). N. L. Batsch and M. S. Mittelman. 2015. World Alzheimer report 2012. Overcoming the Stigma of Dementia. Alzheimer\u2019s Disease International (ADI) 5 (2015)."},{"key":"e_1_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1137\/080716542"},{"key":"e_1_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1093\/brain\/awl051"},{"key":"e_1_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1561\/2200000016"},{"key":"e_1_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF00690836"},{"key":"e_1_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1136\/bmj.b158"},{"key":"e_1_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1007379606734"},{"key":"e_1_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-014-0826-5"},{"key":"e_1_2_1_13_1","volume-title":"Spectral Graph Theory","author":"Chung F.","unstructured":"F. Chung . 1997. Spectral Graph Theory . vol. 92 . American Mathematical Soc . F. Chung. 1997. Spectral Graph Theory. vol. 92. American Mathematical Soc."},{"key":"e_1_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1093\/geront\/35.3.370"},{"key":"e_1_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10915-016-0318-2"},{"key":"e_1_2_1_16_1","doi-asserted-by":"crossref","unstructured":"W. Deng W. Yin and Y. Zhang. 2013. Group sparse optimization by alternating direction method. In SPIE Optical Engineering+Applications. 88580R--88580R. W. Deng W. Yin and Y. Zhang. 2013. Group sparse optimization by alternating direction method. In SPIE Optical Engineering+Applications. 88580R--88580R.","DOI":"10.1117\/12.2024410"},{"key":"e_1_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1212\/01.wnl.0000256697.20968.d7"},{"key":"e_1_2_1_18_1","doi-asserted-by":"crossref","unstructured":"R. S. Doody V. Pavlik P. Massman S. Rountree E. Darby and W. Chan. 2010. Predicting progression of Alzheimer\u2019s disease. Alzheimer\u2019s Res. Ther. 2 1 (2010) 2. R. S. Doody V. Pavlik P. Massman S. Rountree E. Darby and W. Chan. 2010. Predicting progression of Alzheimer\u2019s disease. Alzheimer\u2019s Res. Ther. 2 1 (2010) 2.","DOI":"10.1186\/alzrt25"},{"key":"e_1_2_1_19_1","volume-title":"Applied Regression Analysis","author":"Draper N. R.","unstructured":"N. R. Draper and Harry Smith . 2014. Applied Regression Analysis . vol. 326 . John Wiley 8 Sons. N. R. Draper and Harry Smith. 2014. Applied Regression Analysis. vol. 326. John Wiley 8 Sons."},{"key":"e_1_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00429-010-0283-8"},{"key":"e_1_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1038\/nrneurol.2009.215"},{"key":"e_1_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2016.10.007"},{"key":"e_1_2_1_23_1","first-page":"1","article-title":"Multi-task sparse structure learning with gaussian copula models","volume":"17","author":"Gon\u00e7alves A. R.","year":"2016","unstructured":"A. R. Gon\u00e7alves , F. J. Von Zuben , and A. Banerjee . 2016 . Multi-task sparse structure learning with gaussian copula models . J. Mach. Learn. Res. 17 , 33 (2016), 1 -- 30 . A. R. Gon\u00e7alves, F. J. Von Zuben, and A. Banerjee. 2016. Multi-task sparse structure learning with gaussian copula models. J. Mach. Learn. Res. 17, 33 (2016), 1--30.","journal-title":"J. Mach. Learn. Res."},{"key":"e_1_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neurobiolaging.2010.04.026"},{"key":"e_1_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neurobiolaging.2014.05.038"},{"key":"e_1_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1137\/110822347"},{"key":"e_1_2_1_27_1","unstructured":"M. Hong T. Chang X. Wang M. Razaviyayn S. Ma and Z. Luo. 2014. A block successive upper bound minimization method of multipliers for linearly constrained convex optimization. arXiv:1401.7079. M. Hong T. Chang X. Wang M. Razaviyayn S. Ma and Z. Luo. 2014. A block successive upper bound minimization method of multipliers for linearly constrained convex optimization. arXiv:1401.7079."},{"key":"e_1_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-016-1034-2"},{"key":"e_1_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neurobiolaging.2016.07.005"},{"key":"e_1_2_1_30_1","volume-title":"Disease progression model for cognitive deterioration from Alzheimer\u2019s disease neuroimaging initiative database. Alzheimer\u2019s Dementia 7","author":"Ito K.","year":"2011","unstructured":"K. Ito , B. Corrigan , Q. Zhao , J. French , R. Miller , H. Soares , E. Katz , T. Nicholas , B. Billing , R. Anziano , T. Fullerton , and Alzheimer\u2019s Disease Neuroimaging Initiative . 2011. Disease progression model for cognitive deterioration from Alzheimer\u2019s disease neuroimaging initiative database. Alzheimer\u2019s Dementia 7 ( 2011 ), 151--160. K. Ito, B. Corrigan, Q. Zhao, J. French, R. Miller, H. Soares, E. Katz, T. Nicholas, B. Billing, R. Anziano, T. Fullerton, and Alzheimer\u2019s Disease Neuroimaging Initiative. 2011. Disease progression model for cognitive deterioration from Alzheimer\u2019s disease neuroimaging initiative database. Alzheimer\u2019s Dementia 7 (2011), 151--160."},{"key":"e_1_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1038\/nn.3606"},{"key":"e_1_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/1553374.1553459"},{"key":"e_1_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/1835804.1835847"},{"key":"e_1_2_1_34_1","volume-title":"5th Workshop on Data Mining for Medicine and Healthcare. 49","author":"Liu X.","unstructured":"X. Liu , P. Cao , D. Zhao , and A. Banerjee . 2016. Multi-task spare group lasso for characterizing Alzheimer\u2019s disease . In 5th Workshop on Data Mining for Medicine and Healthcare. 49 . X. Liu, P. Cao, D. Zhao, and A. Banerjee. 2016. Multi-task spare group lasso for characterizing Alzheimer\u2019s disease. In 5th Workshop on Data Mining for Medicine and Healthcare. 49."},{"key":"e_1_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2013.06.033"},{"key":"e_1_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1523\/JNEUROSCI.0964-14.2014"},{"key":"e_1_2_1_37_1","doi-asserted-by":"crossref","unstructured":"N. Meinshausen and P. B\u00fchlmann. 2010. Stability selection. J. R. Stat.l Soc. B 72 4 (2010) 417--473. N. Meinshausen and P. B\u00fchlmann. 2010. Stability selection. J. R. Stat.l Soc. B 72 4 (2010) 417--473.","DOI":"10.1111\/j.1467-9868.2010.00740.x"},{"key":"e_1_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1016\/0024-3795(94)90486-3"},{"key":"e_1_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2008.10.031"},{"key":"e_1_2_1_40_1","unstructured":"P. Rai A. Kumar and H. Daume III. 2012. Simultaneously leveraging output and task structures for multiple-output regression. In Advances in Neural Information Processing Systems. 3185--3193. P. Rai A. Kumar and H. Daume III. 2012. Simultaneously leveraging output and task structures for multiple-output regression. In Advances in Neural Information Processing Systems. 3185--3193."},{"key":"e_1_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.2174\/156720509788929273"},{"key":"e_1_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2010.03.051"},{"key":"e_1_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-9868.2005.00490.x"},{"key":"e_1_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.acn.2004.11.004"},{"key":"e_1_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1002\/hipo.450010102"},{"key":"e_1_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1212\/WNL.0b013e3181af79fb"},{"key":"e_1_2_1_47_1","first-page":"491","article-title":"Medial temporal lobe atrophy predicts Alzheimer\u2019s disease in patients with minor cognitive impairment","volume":"72","author":"Visser P. J.","year":"2002","unstructured":"P. J. Visser , F. R. J. Verhey , P. A. M. Hofman , P. Scheltens , and J. Jolles . 2002 . Medial temporal lobe atrophy predicts Alzheimer\u2019s disease in patients with minor cognitive impairment . J. Neurol., Neurosurg. Psych. 72 , 4 (2002), 491 -- 497 . P. J. Visser, F. R. J. Verhey, P. A. M. Hofman, P. Scheltens, and J. Jolles. 2002. Medial temporal lobe atrophy predicts Alzheimer\u2019s disease in patients with minor cognitive impairment. J. Neurol., Neurosurg. Psych. 72, 4 (2002), 491--497.","journal-title":"J. Neurol., Neurosurg. Psych."},{"key":"e_1_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2014.2314712"},{"key":"e_1_2_1_49_1","volume-title":"IEEE Conference on Computer Vision and Pattern Recognition. 940--947","author":"Wan J.","unstructured":"J. Wan , Z. Zhang , J. Yan , T. Li , B. D. Rao , S. Fang , S. Kim , S. L. Risacher , A. J. Saykin , and L. Shen . 2012. Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer\u2019s disease . In IEEE Conference on Computer Vision and Pattern Recognition. 940--947 . J. Wan, Z. Zhang, J. Yan, T. Li, B. D. Rao, S. Fang, S. Kim, S. L. Risacher, A. J. Saykin, and L. Shen. 2012. Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer\u2019s disease. In IEEE Conference on Computer Vision and Pattern Recognition. 940--947."},{"key":"e_1_2_1_50_1","unstructured":"H. Wang and A. Banerjee. 2014. Bregman alternating direction method of multipliers. In Advances in Neural Information Processing Systems. 2816--2824. H. Wang and A. Banerjee. 2014. Bregman alternating direction method of multipliers. In Advances in Neural Information Processing Systems. 2816--2824."},{"key":"e_1_2_1_51_1","unstructured":"H. Wang A. Banerjee and Z. Luo. 2014. Parallel direction method of multipliers. In Advances in Neural Information Processing Systems. 181--189. H. Wang A. Banerjee and Z. Luo. 2014. Parallel direction method of multipliers. In Advances in Neural Information Processing Systems. 181--189."},{"key":"e_1_2_1_52_1","unstructured":"H. Wang F. Nie H. Huang J. Yan S. Kim S. Risacher A. Saykin and L. Shen. 2012. High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer\u2019s disease progression prediction. In Advances in Neural Information Processing Systems. H. Wang F. Nie H. Huang J. Yan S. Kim S. Risacher A. Saykin and L. Shen. 2012. High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer\u2019s disease progression prediction. In Advances in Neural Information Processing Systems."},{"key":"e_1_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.3174\/ajnr.A1484"},{"key":"e_1_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1137\/080724265"},{"key":"e_1_2_1_55_1","volume-title":"All of Nonparametric Statistics","author":"Wasserman L.","unstructured":"L. Wasserman . 2006. All of Nonparametric Statistics . Springer-Verlag New York . L. Wasserman. 2006. All of Nonparametric Statistics. Springer-Verlag New York."},{"key":"e_1_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jalz.2010.03.007"},{"key":"e_1_2_1_57_1","doi-asserted-by":"crossref","unstructured":"M. W. Weiner D. P. Veitch P. S. Aisen L. A. Beckett N. J. Cairns R. C. Green D. Harvey C. R. Jack W. Jagust and J. C. Morris. 2017. Recent publications from the Alzheimer\u2019s disease neuroimaging initiative: Reviewing progress toward improved AD clinical trials. Alzheimer\u2019s Dementia 13 4 (2017) e1--e85. M. W. Weiner D. P. Veitch P. S. Aisen L. A. Beckett N. J. Cairns R. C. Green D. Harvey C. R. Jack W. Jagust and J. C. Morris. 2017. Recent publications from the Alzheimer\u2019s disease neuroimaging initiative: Reviewing progress toward improved AD clinical trials. Alzheimer\u2019s Dementia 13 4 (2017) e1--e85.","DOI":"10.1016\/j.jalz.2016.11.007"},{"key":"e_1_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2015.08.004"},{"key":"e_1_2_1_59_1","doi-asserted-by":"crossref","unstructured":"L. Xu X. Wu R. Li K. Chen Z. Long J. Zhang X. Guo and L. Yao. 2016. Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. J. Alzheimer\u2019s Dis. 51 4 (2016) 1045--1056. L. Xu X. Wu R. Li K. Chen Z. Long J. Zhang X. Guo and L. Yao. 2016. Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. J. Alzheimer\u2019s Dis. 51 4 (2016) 1045--1056.","DOI":"10.3233\/JAD-151010"},{"key":"e_1_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neurobiolaging.2014.07.045"},{"key":"e_1_2_1_61_1","doi-asserted-by":"publisher","DOI":"10.1137\/090777761"},{"key":"e_1_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1145\/1401890.1402012"},{"key":"e_1_2_1_63_1","doi-asserted-by":"publisher","DOI":"10.1186\/1471-2377-12-46"},{"key":"e_1_2_1_64_1","unstructured":"Y. L. Yu. 2013a. Better approximation and faster algorithm using the proximal average. In Advances in Neural Information Processing Systems. 458--466. Y. L. Yu. 2013a. Better approximation and faster algorithm using the proximal average. In Advances in Neural Information Processing Systems. 458--466."},{"key":"e_1_2_1_65_1","unstructured":"Y. L. Yu. 2013b. On decomposing the proximal map. In Advances in Neural Information Processing Systems. 91--99. Y. L. Yu. 2013b. On decomposing the proximal map. In Advances in Neural Information Processing Systems. 91--99."},{"key":"e_1_2_1_66_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.17"},{"key":"e_1_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2011.09.069"},{"key":"e_1_2_1_68_1","volume-title":"Conference on Uncertainty in Artificial Intelligence. 733--742","author":"Zhang Y.","unstructured":"Y. Zhang and D. Y. Yeung . 2010. A convex formulation for learning task relationships in multi-task learning . In Conference on Uncertainty in Artificial Intelligence. 733--742 . Y. Zhang and D. Y. Yeung. 2010. A convex formulation for learning task relationships in multi-task learning. In Conference on Uncertainty in Artificial Intelligence. 733--742."},{"key":"e_1_2_1_69_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2013.03.073"},{"key":"e_1_2_1_70_1","doi-asserted-by":"publisher","DOI":"10.1145\/2020408.2020549"},{"key":"e_1_2_1_71_1","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2015.2466616"}],"container-title":["ACM Transactions on Knowledge Discovery from Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3230668","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3230668","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,31]],"date-time":"2022-12-31T20:15:54Z","timestamp":1672517754000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3230668"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8,31]]},"references-count":71,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2018,12,31]]}},"alternative-id":["10.1145\/3230668"],"URL":"http:\/\/dx.doi.org\/10.1145\/3230668","relation":{},"ISSN":["1556-4681","1556-472X"],"issn-type":[{"value":"1556-4681","type":"print"},{"value":"1556-472X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,8,31]]},"assertion":[{"value":"2017-05-01","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-04-01","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-08-31","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}