{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T19:37:45Z","timestamp":1730317065742,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":36,"publisher":"ACM","funder":[{"DOI":"10.13039\/100000143","name":"Division of Computing and Communication Foundations","doi-asserted-by":"publisher","award":["CCF-1025177"],"id":[{"id":"10.13039\/100000143","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["R01 LM010730"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000152","name":"Division of Molecular and Cellular Biosciences","doi-asserted-by":"publisher","award":["MCB-1026710"],"id":[{"id":"10.13039\/100000152","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000145","name":"Division of Information and Intelligent Systems","doi-asserted-by":"publisher","award":["IIS-0953662"],"id":[{"id":"10.13039\/100000145","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2014,8,24]]},"DOI":"10.1145\/2623330.2623711","type":"proceedings-article","created":{"date-parts":[[2014,8,22]],"date-time":"2014-08-22T15:38:46Z","timestamp":1408721926000},"page":"135-144","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":80,"title":["From micro to macro"],"prefix":"10.1145","author":[{"given":"Jiayu","family":"Zhou","sequence":"first","affiliation":[{"name":"Arizona State University, Tempe, AZ, USA"}]},{"given":"Fei","family":"Wang","sequence":"additional","affiliation":[{"name":"IBM T.J. Watson Research Center, Yorktown Heights, NY, USA"}]},{"given":"Jianying","family":"Hu","sequence":"additional","affiliation":[{"name":"IBM T.J. Watson Research Center, Yorktown Heights, NY, USA"}]},{"given":"Jieping","family":"Ye","sequence":"additional","affiliation":[{"name":"Arizona State University, Tempe, AZ, USA"}]}],"member":"320","published-online":{"date-parts":[[2014,8,24]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1161\/hy1001.096358"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1137\/080738970"},{"key":"e_1_3_2_2_3_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10208-009-9045-5"},{"key":"e_1_3_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2013.49"},{"volume-title":"Imputation of missing longitudinal data: a comparison of methods. Journal of clinical epidemiology, 56(10):968--976","year":"2003","author":"Engels J. M.","key":"e_1_3_2_2_5_1","unstructured":"J. M. Engels and P. Diehr . Imputation of missing longitudinal data: a comparison of methods. Journal of clinical epidemiology, 56(10):968--976 , 2003 . J. M. Engels and P. Diehr. Imputation of missing longitudinal data: a comparison of methods. Journal of clinical epidemiology, 56(10):968--976, 2003."},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1001\/jama.293.5.572"},{"key":"e_1_3_2_2_7_1","first-page":"1997","volume-title":"NIPS","author":"Gong P.","year":"2012","unstructured":"P. Gong , J. Ye , and C. Zhang . Multi-stage multi-task feature learning . In NIPS , pages 1997 -- 2005 , 2012 . P. Gong, J. Ye, and C. Zhang. Multi-stage multi-task feature learning. In NIPS, pages 1997--2005, 2012."},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1145\/2339530.2339672"},{"key":"e_1_3_2_2_10_1","doi-asserted-by":"publisher","DOI":"10.5555\/1005332.1044709"},{"key":"e_1_3_2_2_11_1","first-page":"937","volume-title":"NIPS","author":"Jain P.","year":"2010","unstructured":"P. Jain , R. Meka , and I. Dhillon . Guaranteed rank minimization via singular value projection . In NIPS , pages 937 -- 945 . 2010 . P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value projection. In NIPS, pages 937--945. 2010."},{"key":"e_1_3_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/1557019.1557072"},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0066341"},{"key":"e_1_3_2_2_14_1","first-page":"836","volume-title":"NIPS","volume":"25","author":"Lee J.","year":"2012","unstructured":"J. Lee , Y. Sun , and M. Saunders . Proximal newton-type methods for convex optimization . In NIPS , volume 25 , pages 836 -- 844 . 2012 . J. Lee, Y. Sun, and M. Saunders. Proximal newton-type methods for convex optimization. In NIPS, volume 25, pages 836--844. 2012."},{"volume-title":"SLEP: Sparse Learning with Efficient Projections","year":"2009","author":"Liu J.","key":"e_1_3_2_2_15_1","unstructured":"J. Liu , S. Ji , and J. Ye . SLEP: Sparse Learning with Efficient Projections . Arizona State University , 2009 . J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections. Arizona State University, 2009."},{"key":"e_1_3_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/1639714.1639719"},{"key":"e_1_3_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1147\/JRD.2012.2198311"},{"key":"e_1_3_2_2_18_1","first-page":"2287","article-title":"Spectral regularization algorithms for learning large incomplete matrices","volume":"99","author":"Mazumder R.","year":"2010","unstructured":"R. Mazumder , T. Hastie , and R. Tibshirani . Spectral regularization algorithms for learning large incomplete matrices . The J. of Mach. Learn. Res. , 99 : 2287 -- 2322 , 2010 . R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. The J. of Mach. Learn. Res., 99:2287--2322, 2010.","journal-title":"The J. of Mach. Learn. Res."},{"key":"e_1_3_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1097\/MLR.0b013e31818dce21"},{"key":"e_1_3_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0735-1097(99)00059-5"},{"key":"e_1_3_2_2_21_1","first-page":"1257","article-title":"Probabilistic matrix factorization","volume":"20","author":"Salakhutdinov R.","year":"2008","unstructured":"R. Salakhutdinov and A. Mnih . Probabilistic matrix factorization . NIPS , 20 : 1257 -- 1264 , 2008 . R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. NIPS, 20:1257--1264, 2008.","journal-title":"NIPS"},{"key":"e_1_3_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.1175\/1520-0442(2001)014<0853:AOICDE>2.0.CO;2"},{"key":"e_1_3_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1080\/10556788.2012.700713"},{"key":"e_1_3_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.2337\/dc08-0521"},{"key":"e_1_3_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/2408736.2408740"},{"key":"e_1_3_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/S8756-3282(02)00848-7"},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/2339530.2339605"},{"key":"e_1_3_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1007\/s12532-012-0044-1"},{"key":"e_1_3_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2009.2016892"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1097\/MLR.0b013e3181de9e17"},{"key":"e_1_3_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972801.19"},{"key":"e_1_3_2_2_32_1","first-page":"702","volume-title":"NIPS","author":"Zhou J.","year":"2011","unstructured":"J. Zhou , J. Chen , and J. Ye . Clustered multi-task learning via alternating structure optimization . In NIPS , pages 702 -- 710 . 2011 . J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alternating structure optimization. In NIPS, pages 702--710. 2011."},{"volume-title":"MALSAR: Multi-tAsk Learning via StructurAl Regularization","year":"2011","author":"Zhou J.","key":"e_1_3_2_2_33_1","unstructured":"J. Zhou , J. Chen , and J. Ye . MALSAR: Multi-tAsk Learning via StructurAl Regularization . Arizona State University , 2011 . http:\/\/www.MALSAR.org. J. Zhou, J. Chen, and J. Ye. MALSAR: Multi-tAsk Learning via StructurAl Regularization. Arizona State University, 2011. http:\/\/www.MALSAR.org."},{"key":"e_1_3_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2013.03.073"},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/2487575.2487671"},{"volume-title":"Patient risk prediction model via top-k stability selection","year":"2012","author":"Zhou J.","key":"e_1_3_2_2_36_1","unstructured":"J. Zhou , J. Sun , Y. Liu , J. Hu , and J. Ye . Patient risk prediction model via top-k stability selection . In SDM. SIAM , 2012 . J. Zhou, J. Sun, Y. Liu, J. Hu, and J. Ye. Patient risk prediction model via top-k stability selection. In SDM. SIAM, 2012."},{"key":"e_1_3_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.1145\/2020408.2020549"}],"event":{"name":"KDD '14: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data"],"location":"New York New York USA","acronym":"KDD '14"},"container-title":["Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/2623330.2623711","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T10:50:32Z","timestamp":1673002232000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/2623330.2623711"}},"subtitle":["data driven phenotyping by densification of longitudinal electronic medical records"],"short-title":[],"issued":{"date-parts":[[2014,8,24]]},"references-count":36,"alternative-id":["10.1145\/2623330.2623711","10.1145\/2623330"],"URL":"http:\/\/dx.doi.org\/10.1145\/2623330.2623711","relation":{},"subject":[],"published":{"date-parts":[[2014,8,24]]},"assertion":[{"value":"2014-08-24","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}