{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T00:38:22Z","timestamp":1728175102943},"publisher-location":"New York, NY, USA","reference-count":29,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2009,6,14]]},"DOI":"10.1145\/1553374.1553380","type":"proceedings-article","created":{"date-parts":[[2009,6,16]],"date-time":"2009-06-16T13:34:36Z","timestamp":1245159276000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2404,"title":["Curriculum learning"],"prefix":"10.1145","author":[{"given":"Yoshua","family":"Bengio","sequence":"first","affiliation":[{"name":"U. Montreal, Montreal, Canada"}]},{"given":"J\u00e9r\u00f4me","family":"Louradour","sequence":"additional","affiliation":[{"name":"U. Montreal, Montreal, Canada and A2iA SA, Paris, France"}]},{"given":"Ronan","family":"Collobert","sequence":"additional","affiliation":[{"name":"NEC Laboratories America, Princeton, NJ"}]},{"given":"Jason","family":"Weston","sequence":"additional","affiliation":[{"name":"NEC Laboratories America, Princeton, NJ"}]}],"member":"320","published-online":{"date-parts":[[2009,6,14]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"Numerical continuation methods. An introduction","author":"Allgower E. L.","year":"1980","unstructured":"Allgower , E. L. , & Georg , K. ( 1980 ). Numerical continuation methods. An introduction . Springer-Verlag . Allgower, E. L., & Georg, K. (1980). Numerical continuation methods. An introduction. Springer-Verlag."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1561\/2200000006"},{"key":"e_1_3_2_1_3_1","volume-title":"Proc. Sys. 13 (pp. 932--938)","author":"Bengio Y.","year":"2001","unstructured":"Bengio , Y. , Ducharme , R. , & Vincent , P. ( 2001 ). A neural probabilistic language model. Adv. Neural Inf . Proc. Sys. 13 (pp. 932--938) . Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural probabilistic language model. Adv. Neural Inf. Proc. Sys. 13 (pp. 932--938)."},{"key":"e_1_3_2_1_4_1","volume-title":"Proc. Sys. 19 (pp. 153--160)","author":"Bengio Y.","year":"2007","unstructured":"Bengio , Y. , Lamblin , P. , Popovici , D. , & Larochelle , H. ( 2007 ). Greedy layer-wise training of deep networks. Adv. Neural Inf . Proc. Sys. 19 (pp. 153--160) . Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Adv. Neural Inf. Proc. Sys. 19 (pp. 153--160)."},{"key":"e_1_3_2_1_5_1","volume-title":"Proc. Sys. 7 (pp. 705--712)","author":"Cohn D.","year":"1995","unstructured":"Cohn , D. , Ghahramani , Z. , & Jordan , M. ( 1995 ). Active learning with statistical models. Adv. Neural Inf . Proc. Sys. 7 (pp. 705--712) . Cohn, D., Ghahramani, Z., & Jordan, M. (1995). Active learning with statistical models. Adv. Neural Inf. Proc. Sys. 7 (pp. 705--712)."},{"key":"e_1_3_2_1_6_1","volume-title":"echnical Report)","author":"Coleman T.","year":"1994","unstructured":"Coleman , T. , & Wu , Z. ( 1994 ). Parallel continuation-based global optimization for molecular conformation and protein folding ( T echnical Report) . Cornell University , Dept . of Computer Science. Coleman, T., & Wu, Z. (1994). Parallel continuation-based global optimization for molecular conformation and protein folding (Technical Report). Cornell University, Dept. of Computer Science."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390177"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.50.3192"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1016\/0010-0277(93)90058-4"},{"key":"e_1_3_2_1_10_1","volume-title":"The difficulty of training deep architectures and the effect of unsupervised pre-training. AI &","author":"Erhan D.","year":"2009","unstructured":"Erhan , D. , Manzagol , P.-A. , Bengio , Y. , Bengio , S. , & Vincent , P. ( 2009 ). The difficulty of training deep architectures and the effect of unsupervised pre-training. AI & ; Stat . '2009. Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent, P. (2009). The difficulty of training deep architectures and the effect of unsupervised pre-training. AI & Stat. '2009."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF01272517"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1162\/neco.2006.18.7.1527"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.1127647"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cognition.2008.11.014"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/1273496.1273556"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1901\/jeab.2004.82-317"},{"key":"e_1_3_2_1_18_1","volume-title":"Proc. Sys. 20 (pp. 1185--1192)","author":"Ranzato M.","year":"2008","unstructured":"Ranzato , M. , Boureau , Y. , & LeCun , Y. ( 2008 ). Sparse feature learning for deep belief networks. Adv. Neural Inf . Proc. Sys. 20 (pp. 1185--1192) . Ranzato, M., Boureau, Y., & LeCun, Y. (2008). Sparse feature learning for deep belief networks. Adv. Neural Inf. Proc. Sys. 20 (pp. 1185--1192)."},{"key":"e_1_3_2_1_19_1","volume-title":"Proc. Sys. 19 (pp. 1137--1144)","author":"Ranzato M.","year":"2007","unstructured":"Ranzato , M. , Poultney , C. , Chopra , S. , & LeCun , Y. ( 2007 ). Efficient learning of sparse representations with an energy-based model. Adv. Neural Inf . Proc. Sys. 19 (pp. 1137--1144) . Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. Adv. Neural Inf. Proc. Sys. 19 (pp. 1137--1144)."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0010-0277(99)00031-1"},{"key":"e_1_3_2_1_21_1","volume-title":"Learning a nonlinear embedding by preserving class neighbourhood structure. AI &","author":"Salakhutdinov R.","year":"2007","unstructured":"Salakhutdinov , R. , & Hinton , G. ( 2007 ). Learning a nonlinear embedding by preserving class neighbourhood structure. AI & ; Stat . '2007. Salakhutdinov, R., & Hinton, G. (2007). Learning a nonlinear embedding by preserving class neighbourhood structure. AI & Stat. '2007."},{"key":"e_1_3_2_1_22_1","volume-title":"Proc. Sys. 20 (pp. 1249--1256)","author":"Salakhutdinov R.","year":"2008","unstructured":"Salakhutdinov , R. , & Hinton , G. ( 2008 ). Using Deep Belief Nets to learn covariance kernels for Gaussian processes. Adv. Neural Inf . Proc. Sys. 20 (pp. 1249--1256) . Salakhutdinov, R., & Hinton, G. (2008). Using Deep Belief Nets to learn covariance kernels for Gaussian processes. Adv. Neural Inf. Proc. Sys. 20 (pp. 1249--1256)."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/1273496.1273596"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/70.294207"},{"key":"e_1_3_2_1_25_1","volume-title":"International Conference on Acoustics, Speech and Signal Processing (pp. 765--768)","author":"Schwenk H.","year":"2002","unstructured":"Schwenk , H. , & Gauvain , J.-L. ( 2002 ). Connectionist language modeling for large vocabulary continuous speech recognition . International Conference on Acoustics, Speech and Signal Processing (pp. 765--768) . Orlando, Florida. Schwenk, H., & Gauvain, J.-L. (2002). Connectionist language modeling for large vocabulary continuous speech recognition. International Conference on Acoustics, Speech and Signal Processing (pp. 765--768). Orlando, Florida."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1037\/h0049039"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4613-1381-6","volume-title":"Explanation-based neural network learning: A lifelong learning approach","author":"Thrun S.","year":"1996","unstructured":"Thrun , S. ( 1996 ). Explanation-based neural network learning: A lifelong learning approach . Boston, MA : Kluwer Academic Publishers . Thrun, S. (1996). Explanation-based neural network learning: A lifelong learning approach. Boston, MA: Kluwer Academic Publishers."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390294"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390303"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1137\/S1052623495283024"}],"event":{"name":"ICML '09: The 26th Annual International Conference on Machine Learning held in conjunction with the 2007 International Conference on Inductive Logic Programming","location":"Montreal Quebec Canada","acronym":"ICML '09","sponsor":["NSF","Microsoft Research Microsoft Research","MITACS"]},"container-title":["Proceedings of the 26th Annual International Conference on Machine Learning"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/1553374.1553380","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,12]],"date-time":"2023-01-12T23:00:37Z","timestamp":1673564437000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/1553374.1553380"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,6,14]]},"references-count":29,"alternative-id":["10.1145\/1553374.1553380","10.1145\/1553374"],"URL":"http:\/\/dx.doi.org\/10.1145\/1553374.1553380","relation":{},"subject":[],"published":{"date-parts":[[2009,6,14]]},"assertion":[{"value":"2009-06-14","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}