iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1111/CGF.14290
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T23:40:04Z","timestamp":1725320404569},"reference-count":73,"publisher":"Wiley","issue":"3","license":[{"start":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T00:00:00Z","timestamp":1624924800000},"content-version":"vor","delay-in-days":28,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018YFC0831700"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61972278"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006606","name":"Natural Science Foundation of Tianjin City","doi-asserted-by":"publisher","award":["20JCQNJC01620"],"id":[{"id":"10.13039\/501100006606","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Computer Graphics Forum"],"published-print":{"date-parts":[[2021,6]]},"abstract":"Abstract<\/jats:title>Multi\u2010dimensional data exploration is a classic research topic in visualization. Most existing approaches are designed for identifying record patterns in dimensional space or subspace. In this paper, we propose a visual analytics approach to exploring subset patterns. The core of the approach is a subset embedding network (SEN) that represents a group of subsets as uniformly\u2010formatted embeddings. We implement the SEN as multiple subnets with separate loss functions. The design enables to handle arbitrary subsets and capture the similarity of subsets on single features, thus achieving accurate pattern exploration, which in most cases is searching for subsets having similar values on few features. Moreover, each subnet is a fully\u2010connected neural network with one hidden layer. The simple structure brings high training efficiency. We integrate the SEN into a visualization system that achieves a 3\u2010step workflow. Specifically, analysts (1) partition the given dataset into subsets, (2) select portions in a projected latent space created using the SEN, and (3) determine the existence of patterns within selected subsets. Generally, the system combines visualizations, interactions, automatic methods, and quantitative measures to balance the exploration flexibility and operation efficiency, and improve the interpretability and faithfulness of the identified patterns. Case studies and quantitative experiments on multiple open datasets demonstrate the general applicability and effectiveness of our approach.<\/jats:p>","DOI":"10.1111\/cgf.14290","type":"journal-article","created":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T16:48:33Z","timestamp":1624985313000},"page":"75-86","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Exploring Multi\u2010dimensional Data via Subset Embedding"],"prefix":"10.1111","volume":"40","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4270-8122","authenticated-orcid":false,"given":"Peng","family":"Xie","sequence":"first","affiliation":[{"name":"College of Intelligence and Computing Tianjin University Tianjin China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9047-4231","authenticated-orcid":false,"given":"Wenyuan","family":"Tao","sequence":"additional","affiliation":[{"name":"College of Intelligence and Computing Tianjin University Tianjin China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6511-4090","authenticated-orcid":false,"given":"Jie","family":"Li","sequence":"additional","affiliation":[{"name":"College of Intelligence and Computing Tianjin University Tianjin China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2976-7953","authenticated-orcid":false,"given":"Wentao","family":"Huang","sequence":"additional","affiliation":[{"name":"College of Intelligence and Computing Tianjin University Tianjin China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2690-3588","authenticated-orcid":false,"given":"Siming","family":"Chen","sequence":"additional","affiliation":[{"name":"School of Data Science Fudan University Shanghai China"}]}],"member":"311","published-online":{"date-parts":[[2021,6,29]]},"reference":[{"key":"e_1_2_10_2_2","unstructured":"AndrewG. AroraR. BilmesJ. LivescuK.: Deep canonical correlation analysis. InProceedings of the 30th International Conference on Machine Learning(2013) vol. 28 pp.1247\u20131255. 10"},{"key":"e_1_2_10_3_2","doi-asserted-by":"crossref","unstructured":"AlbuquerqueG. EisemannM. LehmannD. J. TheiselH. MagnorM.: Improving the visual analysis of high\u2010dimensional datasets using quality measures. In5th IEEE Conference on Visual Analytics Science and Technology(2010) pp.19\u201326. 10","DOI":"10.1109\/VAST.2010.5652433"},{"key":"e_1_2_10_4_2","unstructured":"AkahoS.: A kernel method for canonical correlation analysis.CoRR abs\/cs\/0609071(2006). 10"},{"key":"e_1_2_10_5_2","doi-asserted-by":"crossref","unstructured":"AnandA. WilkinsonL. DangT. N.: Visual pattern discovery using random projections. In2012 IEEE Conference on Visual Analytics Science and Technology (VAST)(2012) IEEE pp.43\u201352. 10","DOI":"10.1109\/VAST.2012.6400490"},{"key":"e_1_2_10_6_2","unstructured":"BBCSport.http:\/\/mlg.ucd.ie\/datasets\/Accessed: 2020\u201009\u201025. 7"},{"key":"e_1_2_10_7_2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"volume-title":"Modern multidimensional scaling: Theory and applications","year":"2005","author":"Borg I.","key":"e_1_2_10_8_2"},{"key":"e_1_2_10_9_2","doi-asserted-by":"crossref","unstructured":"BeyerK. GoldsteinJ. RamakrishnanR. ShaftU.: When is \u201cnearest neighbor\u201d meaningful? In7th International Conference on Database Theory(1999) Springer pp.217\u2013235. 10","DOI":"10.1007\/3-540-49257-7_15"},{"key":"e_1_2_10_10_2","doi-asserted-by":"crossref","unstructured":"BleiD. M. JordanM. I.: Modeling annotated data. InProceedings of the 26th International Conference on Research and Development in Information Retrieval(2003) pp.127\u2013134. 10","DOI":"10.1145\/860435.860460"},{"key":"e_1_2_10_11_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2016.2598667"},{"key":"e_1_2_10_12_2","doi-asserted-by":"crossref","unstructured":"BelkinM. NiyogiP.: Laplacian eigenmaps and spectral techniques for embedding and clustering. InAdvances in Neural Information Processing Systems(2002) pp.585\u2013591. 9","DOI":"10.7551\/mitpress\/1120.003.0080"},{"key":"e_1_2_10_13_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2011.185"},{"key":"e_1_2_10_14_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2015.2467851"},{"issue":"1","key":"e_1_2_10_15_2","first-page":"429","article-title":"Selection bias tracking and detailed subset comparison for high\u2010dimensional data","volume":"26","author":"Borland D.","year":"2019","journal-title":"IEEE Transactions on Visualization and Computer Graphics"},{"key":"e_1_2_10_16_2","unstructured":"Caltech101\u20107.http:\/\/www.vision.caltech.edu\/ImageDatasets\/Caltech101\/Accessed: 2020\u201009\u201025. 7"},{"key":"e_1_2_10_17_2","unstructured":"Chicago crime dataset.https:\/\/www.kaggle.com\/currie32\/crimes-in-chicagoAccessed: 2020\u201007\u201010. 1 7"},{"key":"e_1_2_10_18_2","doi-asserted-by":"crossref","unstructured":"ChatzimparmpasA. MartinsR. M. KerrenA.: t\u2010viSNE: Interactive assessment and interpretation of t\u2010SNE projections.IEEE Transactions on Visualization and Computer Graphics(2020). 9","DOI":"10.1109\/TVCG.2020.2986996"},{"key":"e_1_2_10_19_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2015.2410278"},{"key":"e_1_2_10_20_2","unstructured":"ChenN. ZhuJ. XingE. P.: Predictive subspace learning for multi\u2010view data: a large margin approach. InAdvances in Neural Information Processing Systems(2010) pp.361\u2013369. 10"},{"key":"e_1_2_10_21_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2008.153"},{"key":"e_1_2_10_22_2","unstructured":"EspadotoM. MartinsR. M. KerrenA. HirataN. S. TeleaA. C.: Towards a quantitative survey of dimension reduction techniques.IEEE Transactions on Visualization and Computer Graphics(2019). 9"},{"key":"e_1_2_10_23_2","doi-asserted-by":"crossref","unstructured":"FengS. CongG. AnB. CheeY. M.: Poi2vec: Geographical latent representation for predicting future visitors. InProceedings of the Thirty\u2010First Conference on Artificial Intelligence(2017) pp.102\u2013108. 10","DOI":"10.1609\/aaai.v31i1.10500"},{"key":"e_1_2_10_24_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2019.2934433"},{"key":"e_1_2_10_25_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2018.2865194"},{"key":"e_1_2_10_26_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2019.2934251"},{"key":"e_1_2_10_27_2","doi-asserted-by":"crossref","unstructured":"FeichtenhoferC. PinzA. ZissermanA.: Convolutional two\u2010stream network fusion for video action recognition. InProceedings of the IEEE conference on computer vision and pattern recognition(2016) pp.1933\u20131941. 10","DOI":"10.1109\/CVPR.2016.213"},{"key":"e_1_2_10_28_2","doi-asserted-by":"crossref","unstructured":"FerdosiB. J. RoerdinkJ. B.: Visualizing high\u2010dimensional structures by dimension ordering and filtering using subspace analysis. InComputer Graphics Forum(2011) vol. 30 Wiley Online Library pp.1121\u20131130. 10","DOI":"10.1111\/j.1467-8659.2011.01961.x"},{"key":"e_1_2_10_29_2","unstructured":"FujiwaraT. SakamotoN. NonakaJ. YamamotoK. MaK.\u2010L.:A visual analytics framework for reviewing multivariate time\u2010series data with dimensionality reduction. 10"},{"key":"e_1_2_10_30_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2014.2346260"},{"key":"e_1_2_10_31_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2013.157"},{"issue":"1","key":"e_1_2_10_32_2","first-page":"440","article-title":"Visual analysis of high\u2010dimensional event sequence data via dynamic hierarchical aggregation","volume":"26","author":"Gotz D.","year":"2019","journal-title":"IEEE Transactions on Visualization and Computer Graphics"},{"key":"e_1_2_10_33_2","unstructured":"Handwritten Digits.https:\/\/archive.ics.uci.edu\/ml\/datasets\/Multiple+FeaturesAccessed: 2020\u201009\u201020. 7"},{"key":"e_1_2_10_34_2","doi-asserted-by":"publisher","DOI":"10.1093\/biomet\/28.3-4.321"},{"key":"e_1_2_10_35_2","doi-asserted-by":"publisher","DOI":"10.1126\/science.1127647"},{"key":"e_1_2_10_36_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2015.2467553"},{"key":"e_1_2_10_37_2","unstructured":"JingjingT. YingjieT.: A survey on multi\u2010view learning.Mathematical Modeling and Its Applications(2017). 3 10"},{"key":"e_1_2_10_38_2","doi-asserted-by":"crossref","unstructured":"KarpathyA. Fei\u2010FeiL.: Deep visual\u2010semantic alignments for generating image descriptions. InProceedings of the IEEE conference on computer vision and pattern recognition(2015) pp.3128\u20133137. 10","DOI":"10.1109\/CVPR.2015.7298932"},{"key":"e_1_2_10_39_2","doi-asserted-by":"crossref","unstructured":"LiuS. AnirudhR. ThiagarajanJ. J. BremerP.\u2010T.: Uncovering interpretable relationships in high\u2010dimensional scientific data through function preserving projections.Machine Learning: Science and Technology(2020). 9","DOI":"10.1088\/2632-2153\/abab60"},{"key":"e_1_2_10_40_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2016.2640960"},{"key":"e_1_2_10_41_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2015.2467325"},{"key":"e_1_2_10_42_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2015.2467132"},{"key":"e_1_2_10_43_2","doi-asserted-by":"crossref","unstructured":"LehmannD. J. TheiselH.: General projective maps for multidimensional data projection. InComputer Graphics Forum(2016) vol. 35 Wiley Online Library pp.443\u2013453. 10","DOI":"10.1111\/cgf.12845"},{"key":"e_1_2_10_44_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2017.2754480"},{"key":"e_1_2_10_45_2","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2018.2872063"},{"key":"e_1_2_10_46_2","first-page":"2579","article-title":"Visualizing data using t\u2010SNE","volume":"9","author":"Maaten L. v. d.","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_2_10_47_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2014.09.063"},{"key":"e_1_2_10_48_2","unstructured":"MikolovT. SutskeverI. ChenK. CorradoG. S. DeanJ.: Distributed representations of words and phrases and their compositionality. InAdvances in Neural Information Processing Systems(2013) pp.3111\u20133119. 10"},{"key":"e_1_2_10_49_2","unstructured":"NgiamJ. KhoslaA. KimM. NamJ. LeeH. NgA. Y.: Multimodal deep learning. InProceedings of the 28th International Conference on Machine Learning(2011) pp.689\u2013696. 10"},{"key":"e_1_2_10_50_2","unstructured":"ORL.http:\/\/www.cl.cam.ac.uk\/research\/dtg\/attarchive\/facedatabase.htmlAccessed: 2020\u201009\u201025. 7"},{"key":"e_1_2_10_51_2","unstructured":"PIE.http:\/\/www.cs.cmu.edu\/afs\/cs\/project\/PIE\/MultiPie\/Multi-Pie\/Home.htmlAccessed: 2020\u201009\u201025. 7"},{"key":"e_1_2_10_52_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2014.07.072"},{"key":"e_1_2_10_53_2","doi-asserted-by":"publisher","DOI":"10.1126\/science.290.5500.2323"},{"key":"e_1_2_10_54_2","unstructured":"ShneidermanB.: The eyes have it: A task by data type taxonomy for information visualizations. InProceedings of the 1996 IEEE Symposium on Visual Languages(1996) IEEE pp.336\u2013343. 2 4 10"},{"key":"e_1_2_10_55_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2018.11.015"},{"key":"e_1_2_10_56_2","unstructured":"SeoJ. ShneidermanB.: A rank\u2010by\u2010feature framework for unsupervised multidimensional data exploration using low dimensional projections. InIEEE Symposium on Information Visualization(2004) IEEE pp.65\u201372. 6 10"},{"key":"e_1_2_10_57_2","unstructured":"SrivastavaN. SalakhutdinovR. R.: Multimodal learning with deep boltzmann machines. InAdvances in Neural Information Processing Systems(2012) pp.2222\u20132230. 10"},{"key":"e_1_2_10_58_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2013.220"},{"key":"e_1_2_10_59_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2016.2598495"},{"key":"e_1_2_10_60_2","doi-asserted-by":"crossref","unstructured":"TatuA. AlbuquerqueG. EisemannM. SchneidewindJ. TheiselH. MagnorkM. KeimD.: Combining automated analysis and visualization techniques for effective exploration of high\u2010dimensional data. InIEEE Symposium on Visual Analytics Science and Technology(2009) IEEE pp.59\u201366. 10","DOI":"10.1109\/VAST.2009.5332628"},{"key":"e_1_2_10_61_2","doi-asserted-by":"publisher","DOI":"10.1126\/science.290.5500.2319"},{"key":"e_1_2_10_62_2","article-title":"Computer graphics and exploratory data analysis: An introduction","volume":"5","author":"Tukey J. W.","year":"1988","journal-title":"The Collected Works of John W. Tukey: Graphics: 1965\u20131985"},{"key":"e_1_2_10_63_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2017.2745258"},{"key":"e_1_2_10_64_2","doi-asserted-by":"publisher","DOI":"10.1016\/0169-7439(87)80084-9"},{"key":"e_1_2_10_65_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2017.2701829"},{"key":"e_1_2_10_66_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2017.2672987"},{"key":"e_1_2_10_67_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2015.2467191"},{"key":"e_1_2_10_68_2","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2011.2106208"},{"key":"e_1_2_10_69_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2017.2744098"},{"key":"e_1_2_10_70_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2013.150"},{"key":"e_1_2_10_71_2","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2901117"},{"key":"e_1_2_10_72_2","doi-asserted-by":"crossref","unstructured":"ZhouF. LiJ. HuangW. ZhaoY. YuanX. LiangX. ShiY.: Dimension reconstruction for visual exploration of subspace clusters in high\u2010dimensional data. In2016 IEEE Pacific Visualization Symposium (PacificVis)(2016) IEEE pp.128\u2013135. 10","DOI":"10.1109\/PACIFICVIS.2016.7465260"},{"key":"e_1_2_10_73_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2017.02.007"},{"key":"e_1_2_10_74_2","doi-asserted-by":"publisher","DOI":"10.1137\/S1064827502419154"}],"container-title":["Computer Graphics Forum"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1111\/cgf.14290","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1111\/cgf.14290","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1111\/cgf.14290","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T22:54:19Z","timestamp":1725317659000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1111\/cgf.14290"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":73,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2021,6]]}},"alternative-id":["10.1111\/cgf.14290"],"URL":"http:\/\/dx.doi.org\/10.1111\/cgf.14290","archive":["Portico"],"relation":{},"ISSN":["0167-7055","1467-8659"],"issn-type":[{"type":"print","value":"0167-7055"},{"type":"electronic","value":"1467-8659"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"2021-06-29","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}