iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/TNNLS.2023.3280899
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T04:29:29Z","timestamp":1728448169858},"reference-count":48,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"10","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Key Research and Development Programs of Zhejiang","award":["2022C01018"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U21B2001","61973273","U22B2036","11931015"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004731","name":"Zhejiang Provincial Natural Science Foundation of China","doi-asserted-by":"publisher","award":["LR19F030001"],"id":[{"id":"10.13039\/501100004731","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002920","name":"Hong Kong Research Grants Council","doi-asserted-by":"publisher","award":["CityU11206320"],"id":[{"id":"10.13039\/501100002920","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Key Technology Research and Development Program of Science and Technology-Scientific and Technological Innovation Team of Shaanxi Province","award":["2020TD-013"]},{"name":"Xplorer Prize"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Neural Netw. Learning Syst."],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1109\/tnnls.2023.3280899","type":"journal-article","created":{"date-parts":[[2023,6,13]],"date-time":"2023-06-13T17:19:34Z","timestamp":1686676774000},"page":"14671-14683","source":"Crossref","is-referenced-by-count":2,"title":["RGP: Neural Network Pruning Through Regular Graph With Edges Swapping"],"prefix":"10.1109","volume":"35","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8736-8814","authenticated-orcid":false,"given":"Zhuangzhi","family":"Chen","sequence":"first","affiliation":[{"name":"Institute of Cyberspace Security and the College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5350-1528","authenticated-orcid":false,"given":"Jingyang","family":"Xiang","sequence":"additional","affiliation":[{"name":"Institute of Cyberspace Security and the College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"}]},{"given":"Yao","family":"Lu","sequence":"additional","affiliation":[{"name":"Institute of Cyberspace Security and the College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1042-470X","authenticated-orcid":false,"given":"Qi","family":"Xuan","sequence":"additional","affiliation":[{"name":"Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8182-2852","authenticated-orcid":false,"given":"Zhen","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1381-7418","authenticated-orcid":false,"given":"Guanrong","family":"Chen","sequence":"additional","affiliation":[{"name":"Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3117-2211","authenticated-orcid":false,"given":"Xiaoniu","family":"Yang","sequence":"additional","affiliation":[{"name":"Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China"}]}],"member":"263","reference":[{"key":"ref1","article-title":"Do deep nets really need to be deep?","volume":"27","author":"Ba","year":"2014","journal-title":"Advances in Neural Information Processing Systems"},{"journal-title":"arXiv:1802.04799","article-title":"TVM: An automated end-to-end optimizing compiler for deep learning","year":"2018","author":"Chen","key":"ref2"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref4","article-title":"Exploiting linear structure within convolutional networks for efficient evaluation","volume":"27","author":"Denton","year":"2014","journal-title":"Advances in Neural Information Processing Systems"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00508"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.95.188701"},{"first-page":"1","article-title":"The lottery ticket hypothesis: Finding sparse, trainable neural networks","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Frankle","key":"ref7"},{"key":"ref8","first-page":"135","article-title":"Learning both weights and connections for efficient neural network","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"28","author":"Han"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/309"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/tnnls.2022.3149332"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.155"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"article-title":"Learning multiple layers of features from tiny images","year":"2009","author":"Krizhevsky","key":"ref14"},{"key":"ref15","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","volume-title":"Proc. Adv. Neural Inf. Process. Syst. (NIPS)","volume":"25","author":"Krizhevsky"},{"first-page":"1","article-title":"Optimal brain damage","volume-title":"Proc. NIPS","author":"LeCun","key":"ref16"},{"first-page":"1","article-title":"SNIP: Single-shot network pruning based on connection sensitivity","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Lee","key":"ref17"},{"journal-title":"arXiv:1608.08710","article-title":"Pruning filters for efficient ConvNets","year":"2016","author":"Li","key":"ref18"},{"first-page":"1","article-title":"Provable filter pruning for efficient neural networks","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Liebenwein","key":"ref19"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/tnnls.2022.3156047"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2021.3084856"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00160"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/94"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3195774"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00290"},{"first-page":"1","article-title":"Dynamic model pruning with feedback","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Lin","key":"ref26"},{"first-page":"1","article-title":"Dynamic sparse training: Find efficient sparse network from scratch with trainable masked layers","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Liu","key":"ref27"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107461"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.541"},{"journal-title":"arXiv:2104.08378","article-title":"Accelerating sparse deep neural networks","year":"2021","author":"Mishra","key":"ref30"},{"journal-title":"arXiv:1611.06440","article-title":"Pruning convolutional neural networks for resource efficient inference","year":"2016","author":"Molchanov","key":"ref31"},{"article-title":"Reading digits in natural images with unsupervised feature learning","volume-title":"Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn.","author":"Netzer","key":"ref32"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58580-8_35"},{"key":"ref34","first-page":"8024","article-title":"PyTorch: An imperative style, high-performance deep learning library","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Paszke"},{"key":"ref35","first-page":"13316","article-title":"Channel permutations for N:M sparsity","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Pool"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1093\/nsr\/nwz050"},{"journal-title":"arXiv:1409.1556","article-title":"Very deep convolutional networks for large-scale image recognition","year":"2014","author":"Simonyan","key":"ref37"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"journal-title":"arXiv:2006.00896","article-title":"Pruning via iterative ranking of sensitivity statistics","year":"2020","author":"Verdenius","key":"ref39"},{"journal-title":"arXiv:2010.04879","article-title":"Accelerate CNNs from three dimensions: A comprehensive pruning framework","year":"2020","author":"Wang","key":"ref40"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.6910"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/136"},{"first-page":"10881","article-title":"Graph structure of neural networks","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"You","key":"ref43"},{"journal-title":"arXiv:2104.08700","article-title":"Lottery jackpots exist in pre-trained models","year":"2021","author":"Zhang","key":"ref44"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/tnnls.2022.3147269"},{"journal-title":"arXiv:2206.06662","article-title":"Learning best combination for efficient N:M sparsity","year":"2022","author":"Zhang","key":"ref46"},{"journal-title":"arXiv:2102.04010","article-title":"Learning N:M fine-grained structured sparse neural networks from scratch","year":"2021","author":"Zhou","key":"ref47"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00340"}],"container-title":["IEEE Transactions on Neural Networks and Learning Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/5962385\/10707065\/10149178.pdf?arnumber=10149178","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T17:44:33Z","timestamp":1728409473000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10149178\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":48,"journal-issue":{"issue":"10"},"URL":"https:\/\/doi.org\/10.1109\/tnnls.2023.3280899","relation":{},"ISSN":["2162-237X","2162-2388"],"issn-type":[{"type":"print","value":"2162-237X"},{"type":"electronic","value":"2162-2388"}],"subject":[],"published":{"date-parts":[[2024,10]]}}}