{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T05:56:00Z","timestamp":1725429360735},"reference-count":63,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"11","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62036006","62072288"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["LP180100114","DP200102611"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010029","name":"Taishan Scholar Program of Shandong Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010029","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Neural Netw. Learning Syst."],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1109\/tnnls.2022.3157688","type":"journal-article","created":{"date-parts":[[2022,3,21]],"date-time":"2022-03-21T20:21:47Z","timestamp":1647894107000},"page":"9234-9247","source":"Crossref","is-referenced-by-count":11,"title":["Self-Paced Co-Training of Graph Neural Networks for Semi-Supervised Node Classification"],"prefix":"10.1109","volume":"34","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0415-8556","authenticated-orcid":false,"given":"Maoguo","family":"Gong","sequence":"first","affiliation":[{"name":"School of Electronic Engineering, Xidian University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0690-7856","authenticated-orcid":false,"given":"Hui","family":"Zhou","sequence":"additional","affiliation":[{"name":"School of Electronic Engineering, Xidian University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6631-1651","authenticated-orcid":false,"given":"A. K.","family":"Qin","sequence":"additional","affiliation":[{"name":"Department of Computing Technologies, Swinburne University of Technology, Melbourne, VIC, Australia"}]},{"given":"Wenfeng","family":"Liu","sequence":"additional","affiliation":[{"name":"School of Electronic Engineering, Xidian University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5880-0225","authenticated-orcid":false,"given":"Zhongying","family":"Zhao","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2921564"},{"key":"ref57","first-page":"40","article-title":"Revisiting semi-supervised learning with graph embeddings","author":"yang","year":"2016","journal-title":"Proc 33nd Int Conf Mach Learn"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2012.6248110"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1007\/1-84628-284-5_7"},{"key":"ref15","first-page":"2275","article-title":"Self-paced co-training","volume":"70","author":"ma","year":"2017","journal-title":"Proc 34th Int Conf Mach Learn"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v30i1.9977"},{"key":"ref14","first-page":"80","article-title":"Text classification and co-training from positive and unlabeled examples","author":"denis","year":"2003","journal-title":"Proc ICML"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11274"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v29i1.9608"},{"key":"ref52","first-page":"1","article-title":"A survey on multi-view learning","volume":"abs 1304 5634","author":"xu","year":"2013","journal-title":"CoRR"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2010.2045708"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/72.159058"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/279943.279962"},{"key":"ref54","first-page":"1","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2015","journal-title":"Proc 3rd Int Conf Learn Represent"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/34.824819"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2979670"},{"key":"ref19","first-page":"2078","article-title":"Self-paced learning with diversity","volume":"27","author":"jiang","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1145\/2806416.2806552"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/564"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219968"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/400"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1145\/3097983.3098141"},{"key":"ref48","first-page":"1189","article-title":"Self-paced learning for latent variable models","author":"kumar","year":"2010","journal-title":"Advances in neural information processing systems"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2019.2950560"},{"key":"ref42","first-page":"74","article-title":"A co-regularization approach to semi-supervised learning with multiple views","author":"sindhwani","year":"2005","journal-title":"Proc ICML"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1145\/1015330.1015350"},{"key":"ref44","first-page":"1","article-title":"Self-paced multi-view co-training","volume":"21","author":"ma","year":"2020","journal-title":"J Mach Learn Res"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390279"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3220041"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-01548-9"},{"key":"ref7","first-page":"1","article-title":"Graph attention networks","author":"velickovic","year":"2018","journal-title":"Proc 6th Int Conf Learn Represent"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2009.2015974"},{"key":"ref4","first-page":"1","article-title":"A fair comparison of graph neural networks for graph classification","author":"errica","year":"2020","journal-title":"Proc 8th Int Conf Learn Represent"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.07.001"},{"key":"ref6","first-page":"1","article-title":"Semi-supervised classification with graph convolutional networks","author":"kipf","year":"2017","journal-title":"Proc 5th Int Conf Learn Represent"},{"key":"ref5","first-page":"1","article-title":"Spectral networks and locally connected networks on graphs","author":"bruna","year":"2014","journal-title":"Proc 2nd Int Conf Learn Represent"},{"key":"ref40","first-page":"675","article-title":"Semi-supervised learning with very few labeled training examples","author":"zhou","year":"2007","journal-title":"Proc 22nd AAAI Conf Artif Intell"},{"key":"ref35","article-title":"Attention-based graph neural network for semi-supervised learning","author":"thekumparampil","year":"2018","journal-title":"arXiv 1803 03735"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.576"},{"key":"ref37","first-page":"1024","article-title":"Inductive representation learning on large graphs","author":"hamilton","year":"2017","journal-title":"Proc 21st Conf Neural Inf Process Syst"},{"key":"ref36","article-title":"GraphMix: Improved training of GNNs for semi-supervised learning","author":"verma","year":"2019","journal-title":"arXiv 1909 11715"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2978857"},{"key":"ref30","first-page":"3111","article-title":"Distributed representations of words and phrases and their compositionality","volume":"26","author":"mikolov","year":"2013","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref33","first-page":"3844","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","author":"defferrard","year":"2016","journal-title":"Proc 13th Annu Conf Neural Inf Process Syst"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2020.02.001"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2978386"},{"key":"ref1","first-page":"5449","article-title":"Representation learning on graphs with jumping knowledge networks","volume":"80","author":"xu","year":"2018","journal-title":"Proc 35th Int Conf Mach Learn"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2011.2157998"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCA.2007.904745"},{"key":"ref24","first-page":"2399","article-title":"Manifold regularization: A geometric framework for learning from labeled and unlabeled examples","volume":"7","author":"belkin","year":"2006","journal-title":"J Mach Learn Res"},{"key":"ref23","first-page":"912","article-title":"Semi-supervised learning using Gaussian fields and harmonic functions","author":"zhu","year":"2003","journal-title":"Proc 20th Int Conf Mach Learn"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623732"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_34"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/438"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2005.186"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2020.3048902"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611975321.18"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/2736277.2741093"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939754"},{"key":"ref29","first-page":"2111","article-title":"Network representation learning with rich text information","author":"yang","year":"2015","journal-title":"Proc 24th Int Conf Artif Intell"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1038\/44565"},{"key":"ref62","first-page":"2579","article-title":"Viualizing data using t-SNE","volume":"9","author":"van der maaten","year":"2008","journal-title":"J Mach Learn Res"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1016\/j.physa.2017.08.116"}],"container-title":["IEEE Transactions on Neural Networks and Learning Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/5962385\/10299535\/09738732.pdf?arnumber=9738732","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,13]],"date-time":"2023-11-13T19:26:44Z","timestamp":1699903604000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9738732\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":63,"journal-issue":{"issue":"11"},"URL":"http:\/\/dx.doi.org\/10.1109\/tnnls.2022.3157688","relation":{},"ISSN":["2162-237X","2162-2388"],"issn-type":[{"value":"2162-237X","type":"print"},{"value":"2162-2388","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,11]]}}}