iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/TMM.2022.3208743
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:24:03Z","timestamp":1726763043941},"reference-count":67,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"National Key Research and Development Program of China","award":["2021YFB3100800"]},{"DOI":"10.13039\/501100002341","name":"Academy of Finland","doi-asserted-by":"publisher","award":["331883"],"id":[{"id":"10.13039\/501100002341","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61872379","62022091","62022091"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","award":["201903170129"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Multimedia"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/tmm.2022.3208743","type":"journal-article","created":{"date-parts":[[2022,9,22]],"date-time":"2022-09-22T22:58:46Z","timestamp":1663887526000},"page":"6422-6435","source":"Crossref","is-referenced-by-count":8,"title":["Uncertainty-Guided Semi-Supervised Few-Shot Class-Incremental Learning With Knowledge Distillation"],"prefix":"10.1109","volume":"25","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9337-687X","authenticated-orcid":false,"given":"Yawen","family":"Cui","sequence":"first","affiliation":[{"name":"CMVS, University of Oulu, Oulu, Finland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4179-0059","authenticated-orcid":false,"given":"Wanxia","family":"Deng","sequence":"additional","affiliation":[{"name":"School of Meteorology and Oceanography, NUDT, Changsha, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3238-745X","authenticated-orcid":false,"given":"Xin","family":"Xu","sequence":"additional","affiliation":[{"name":"College of Intelligent Science, NUDT, Changsha, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1233-1494","authenticated-orcid":false,"given":"Zhen","family":"Liu","sequence":"additional","affiliation":[{"name":"College of Intelligent Science, NUDT, Changsha, China"}]},{"given":"Zhong","family":"Liu","sequence":"additional","affiliation":[{"name":"Laboratory for Big Data and decision, the College of System Engineering, National University of Defense Technology (NUDT), Changsha, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2263-6731","authenticated-orcid":false,"given":"Matti","family":"Pietik\u00e4inen","sequence":"additional","affiliation":[{"name":"CMVS, University of Oulu, Oulu, Finland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2011-2873","authenticated-orcid":false,"given":"Li","family":"Liu","sequence":"additional","affiliation":[{"name":"Laboratory for Big Data and decision, the College of System Engineering, National University of Defense Technology (NUDT), Changsha, China"}]}],"member":"263","reference":[{"key":"ref13","first-page":"3987","article-title":"Continual learning through synaptic intelligence","author":"zenke","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00167"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1611835114"},{"key":"ref56","first-page":"912","article-title":"Semi-supervised learning using Gaussian fields and harmonic functions","author":"zhu","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01220"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00521"},{"key":"ref14","first-page":"38","article-title":"Distilling the knowledge in a neural network","volume":"14","author":"hinton","year":"0","journal-title":"Comput Sci"},{"key":"ref58","first-page":"11523","article-title":"Time-consistent self-supervision for semi-supervised learning","author":"zhou","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref53","first-page":"2","article-title":"Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks","volume":"3","author":"lee","year":"0","journal-title":"Proc Workshop Challenges Representation Learn"},{"key":"ref52","first-page":"299","article-title":"Transductive semi-suspervised deep learning using min-max features","author":"shi","year":"0","journal-title":"Proc Eur Comput Vis Conf"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00092"},{"key":"ref55","first-page":"2352","article-title":"Variational autoencoder for deep learning of images, labels and captions","author":"pu","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.587"},{"key":"ref54","first-page":"290","article-title":"Transductive learning via spectral graph partitioning","author":"joachims","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/0010-0277(93)90058-4"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2021.3091859"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00743"},{"key":"ref18","article-title":"One shot learning of simple visual concepts","volume":"33","author":"lake","year":"0","journal-title":"Proc Annu Meeting Cogn Sci Soc"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01227"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.753"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11769"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2773081"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1145\/2733373.2806216"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01219-9_9"},{"key":"ref42","first-page":"10132","article-title":"Unsupervised meta-learning for few-shot image classification","author":"khodadadeh","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref41","first-page":"10132","article-title":"Unsupervised learning via meta-learning","author":"hsu","year":"0","journal-title":"Int Conf Learn Representations"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1016\/S0079-7421(08)60536-8"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.3389\/fncom.2020.00083"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1145\/2998574"},{"key":"ref8","first-page":"5947","article-title":"Exploring generalization in deep learning","author":"neyshabur","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref7","first-page":"1060","article-title":"Generative adversarial text to image synthesis","author":"reed","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuron.2017.06.011"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-019-01247-4"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3203630"},{"key":"ref6","first-page":"3523","article-title":"Image segmentation using deep learning: A survey","volume":"44","author":"minaee","year":"2022","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00482"},{"key":"ref40","first-page":"1","article-title":"Learning to propagate labels: Transductive propagation network for few-shot learning","author":"liu","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref35","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"finn","year":"0","journal-title":"Proc Int Conf Machine Learning"},{"key":"ref34","first-page":"4080","article-title":"Prototypical networks for few-shot learning","author":"snell","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref37","first-page":"1842","article-title":"Meta-learning with memory-augmented neural networks","author":"santoro","year":"0","journal-title":"Proc 33rd Int Conf Mach Learn"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46466-4_37"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01285"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01287"},{"key":"ref33","first-page":"3630","article-title":"Matching networks for one shot learning","author":"vinyals","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2587643"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"ref39","first-page":"1","article-title":"Meta-learning for semi-supervised few-shot classification","author":"ren","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref38","first-page":"3173","article-title":"Attentive recurrent comparators","author":"shyam","year":"0","journal-title":"Proc Int Conf Machine Learning"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2858821"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00673"},{"key":"ref67","article-title":"An image is worth 16x16 words: Transformers for image recognition at scale","author":"dosovitskiy","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP42928.2021.9506346"},{"key":"ref25","first-page":"5050","article-title":"Mixmatch: A holistic approach to semi-supervised learning","author":"berthelot","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2020.3001510"},{"key":"ref64","article-title":"Learning multiple layers of features from tiny images","author":"krizhevsky","year":"2009"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01258-8_15"},{"key":"ref22","first-page":"1","article-title":"Incremental few-shot learning via vector quantization in deep embedded space","author":"chen","year":"0","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref66","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"laurens","year":"2008","journal-title":"J Mach Learn Res"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00256"},{"key":"ref65","first-page":"1","article-title":"Efficient lifelong learning with a-gem","author":"chaudhry","year":"0","journal-title":"Proc ICLR Int Conf Learn Representations"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2019.2910052"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15555-0_10"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00053"},{"key":"ref60","first-page":"200","article-title":"Transductive inference for text classification using support vector machines","volume":"99","author":"joachims","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref62","first-page":"1","article-title":"In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning","author":"rizve","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref61","first-page":"57","article-title":"Semi-supervised classification by low density separation","author":"chapelle","year":"0","journal-title":"Proc Int Workshop Artif Intell Statist"}],"container-title":["IEEE Transactions on Multimedia"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6046\/10016790\/09899753.pdf?arnumber=9899753","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,27]],"date-time":"2023-11-27T20:06:40Z","timestamp":1701115600000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9899753\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":67,"URL":"https:\/\/doi.org\/10.1109\/tmm.2022.3208743","relation":{},"ISSN":["1520-9210","1941-0077"],"issn-type":[{"value":"1520-9210","type":"print"},{"value":"1941-0077","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023]]}}}