iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/TMC.2022.3146881
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T06:33:41Z","timestamp":1724135621229},"reference-count":50,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"7","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"National Key R&D Program of China"},{"name":"Emergent behavior recognition, training and interpretation techniques","award":["2018AAA0102302"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. on Mobile Comput."],"published-print":{"date-parts":[[2023,7,1]]},"DOI":"10.1109\/tmc.2022.3146881","type":"journal-article","created":{"date-parts":[[2022,1,31]],"date-time":"2022-01-31T22:16:36Z","timestamp":1643667396000},"page":"4056-4069","source":"Crossref","is-referenced-by-count":29,"title":["Multi-UAV Navigation for Partially Observable Communication Coverage by Graph Reinforcement Learning"],"prefix":"10.1109","volume":"22","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7105-014X","authenticated-orcid":false,"given":"Zhenhui","family":"Ye","sequence":"first","affiliation":[{"name":"College of Computer Science, Zhejiang University, Hangzhou, China"}]},{"given":"Ke","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Aerospace and Astronautics, Zhejiang University, Hangzhou, China"}]},{"given":"Yining","family":"Chen","sequence":"additional","affiliation":[{"name":"School of Aerospace and Astronautics, Zhejiang University, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5180-1137","authenticated-orcid":false,"given":"Xiaohong","family":"Jiang","sequence":"additional","affiliation":[{"name":"College of Computer Science, Zhejiang University, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3330-4978","authenticated-orcid":false,"given":"Guanghua","family":"Song","sequence":"additional","affiliation":[{"name":"School of Aerospace and Astronautics, Zhejiang University, Hangzhou, China"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/LWC.2017.2752161"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2016.2531652"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2019.2908171"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2018.2864373"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/WCNCW.2015.7122576"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2945478"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.01041"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/WCSP49889.2020.9299760"},{"key":"ref19","first-page":"1352","article-title":"Reinforcement learning with deep energy-based policies","author":"haarnoja","year":"2017","journal-title":"Proc 34th Int Conf Mach Learn"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1179"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/IROS40897.2019.8968555"},{"key":"ref46","first-page":"2252","article-title":"Learning multiagent communication with backpropagation","author":"sukhbaatar","year":"2016","journal-title":"Proc 30th Int Conf Neural Inf Process Syst"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref48","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref47","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/nature14236","article-title":"Human-level control through deep reinforcement learning","volume":"518","author":"mnih","year":"2015","journal-title":"Nature"},{"key":"ref42","first-page":"2961","article-title":"Actor-attention-critic for multi-agent reinforcement learning","author":"iqbal","year":"2019","journal-title":"Proc 36th Int Conf Mach Learn"},{"key":"ref41","article-title":"Continuous control with deep reinforcement learning","author":"lillicrap","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref44","article-title":"Graph attention networks","author":"veli?kovi?","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref43","article-title":"Reducing overestimation bias in multi-agent domains using double centralized critics","author":"ackermann","year":"2019","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2901791"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/3241539.3241549"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/JCN.2018.000070"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CCNC.2018.8319233"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/MILCOM.2011.6127543"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/MC.2004.1266292"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3390\/rs9080824"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/MCOM.2017.1600238CM"},{"key":"ref40","article-title":"Graph convolutional reinforcement learning","author":"jiang","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref35","first-page":"252","article-title":"Multi-UAV formation maneuvering control based on Q-learning fuzzy controller","author":"rui","year":"2010","journal-title":"Proc 2nd Int Conf Adv Comput Control"},{"key":"ref34","first-page":"183","article-title":"Multi-agent reinforcement learning: An overview","author":"bu?oniu","year":"2010","journal-title":"Innovations in Multi-Agent Systems and Applications - 1"},{"key":"ref37","first-page":"6379","article-title":"Multi-agent actor-critic for mixed cooperative-competitive environments","author":"lowe","year":"2017","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2015.2509646"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM38437.2019.9013181"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2018.2870397"},{"key":"ref33","volume":"37","author":"rummery","year":"1994","journal-title":"On-line Q-learning using connectionist systems"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1145\/3349625.3355437"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2015.7140074"},{"key":"ref1","first-page":"1","article-title":"Benchmark analysis of Jetson TX2, Jetson Nano and raspberry PI using deep-CNN","author":"s\u00fczen","year":"2020","journal-title":"Proc Int Congr Hum -Comput Interact Optim Robot Appl"},{"key":"ref39","first-page":"5998","article-title":"Attention is all you need","author":"vaswani","year":"2017","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2020.3014788"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.adhoc.2012.12.004"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2017.2751045"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.ast.2017.05.031"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICOIN48656.2020.9016543"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CC.2018.8485481"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2018.2840143"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2017.08.004"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/s10846-019-01062-6"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2018.11.008"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2017.7989656"}],"container-title":["IEEE Transactions on Mobile Computing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/7755\/10144458\/09697395.pdf?arnumber=9697395","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,26]],"date-time":"2023-06-26T18:57:39Z","timestamp":1687805859000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9697395\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,1]]},"references-count":50,"journal-issue":{"issue":"7"},"URL":"http:\/\/dx.doi.org\/10.1109\/tmc.2022.3146881","relation":{"has-preprint":[{"id-type":"doi","id":"10.36227\/techrxiv.15048273","asserted-by":"object"},{"id-type":"doi","id":"10.36227\/techrxiv.15048273.v1","asserted-by":"object"},{"id-type":"doi","id":"10.36227\/techrxiv.15048273.v2","asserted-by":"object"}]},"ISSN":["1536-1233","1558-0660","2161-9875"],"issn-type":[{"value":"1536-1233","type":"print"},{"value":"1558-0660","type":"electronic"},{"value":"2161-9875","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,7,1]]}}}