{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:21:57Z","timestamp":1727065317958},"reference-count":29,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"10","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Royal Society International Exchanges","award":["IEC\\NSFC\\170294"]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["531118010335"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Ind. Inf."],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1109\/tii.2021.3056867","type":"journal-article","created":{"date-parts":[[2021,2,7]],"date-time":"2021-02-07T03:58:03Z","timestamp":1612670283000},"page":"7050-7059","source":"Crossref","is-referenced-by-count":185,"title":["A Stacked GRU-RNN-Based Approach for Predicting Renewable Energy and Electricity Load for Smart Grid Operation"],"prefix":"10.1109","volume":"17","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8057-9654","authenticated-orcid":false,"given":"Min","family":"Xia","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7106-0009","authenticated-orcid":false,"given":"Haidong","family":"Shao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7363-9727","authenticated-orcid":false,"given":"Xiandong","family":"Ma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5871-639X","authenticated-orcid":false,"given":"Clarence W.","family":"de Silva","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2017.04.095"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2016.2634624"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2019.105994"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TSTE.2019.2904436"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2016.2569608"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2016.12.095"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2910606"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.enconman.2019.111799"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1111\/exsy.12394"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2019.05.044"},{"key":"ref4","article-title":"Wind Energy in Europe in 2019: Trends and Statistics","year":"0"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2020.108566"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2018.02.007"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.mechmachtheory.2018.11.005"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2020.2990682"},{"key":"ref29","year":"0"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2020.109836"},{"key":"ref8","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1049\/iet-gtd.2017.0354","article-title":"Energy management system, generation and demand predictors: A review","volume":"12","author":"jianhua","year":"2018","journal-title":"IET Gener Transmiss Distrib"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1007\/s10100-018-0531-1"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2017.2755465"},{"key":"ref1","doi-asserted-by":"crossref","first-page":"866","DOI":"10.3390\/en12050866","article-title":"Short-term electric load and price forecasting using enhanced extreme learning machine optimization in smart grids","volume":"12","author":"naz","year":"2019","journal-title":"Energies"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1080\/21642583.2018.1480979"},{"key":"ref20","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106351","article-title":"Data-driven prognosis method using hybrid deep recurrent neural network","volume":"93","author":"xia","year":"2020","journal-title":"Appl Soft Comput"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TSG.2017.2753802"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2017.12.051"},{"key":"ref24","year":"2019"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/MWSCAS.2017.8053243"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.ress.2020.107028"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2018.2881543"}],"container-title":["IEEE Transactions on Industrial Informatics"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9424\/9480159\/09347810.pdf?arnumber=9347810","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T14:52:34Z","timestamp":1652194354000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9347810\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":29,"journal-issue":{"issue":"10"},"URL":"http:\/\/dx.doi.org\/10.1109\/tii.2021.3056867","relation":{},"ISSN":["1551-3203","1941-0050"],"issn-type":[{"value":"1551-3203","type":"print"},{"value":"1941-0050","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,10]]}}}