iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/TIFS.2024.3352837
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:35:04Z","timestamp":1726763704318},"reference-count":59,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Singapore Ministry of Education AcRF Tier 1","award":["RG61\/22"]},{"name":"Start-Up Grant"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans.Inform.Forensic Secur."],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tifs.2024.3352837","type":"journal-article","created":{"date-parts":[[2024,1,18]],"date-time":"2024-01-18T18:30:10Z","timestamp":1705602610000},"page":"2814-2825","source":"Crossref","is-referenced-by-count":2,"title":["Detection of Adversarial Attacks via Disentangling Natural Images and Perturbations"],"prefix":"10.1109","volume":"19","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6808-5800","authenticated-orcid":false,"given":"Yuanyuan","family":"Qing","sequence":"first","affiliation":[{"name":"School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2034-8026","authenticated-orcid":false,"given":"Tao","family":"Bai","sequence":"additional","affiliation":[{"name":"School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore"}]},{"given":"Zhuotao","family":"Liu","sequence":"additional","affiliation":[{"name":"Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China"}]},{"given":"Pierre","family":"Moulin","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Illinois at Urbana—Champaign, Champaign, IL, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6874-6453","authenticated-orcid":false,"given":"Bihan","family":"Wen","sequence":"additional","affiliation":[{"name":"School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore"}]}],"member":"263","reference":[{"key":"ref1","article-title":"Intriguing properties of neural networks","author":"Szegedy","year":"2013","journal-title":"arXiv:1312.6199"},{"key":"ref2","article-title":"Explaining and harnessing adversarial examples","author":"Goodfellow","year":"2014","journal-title":"arXiv:1412.6572"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3319535.3339815"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01426"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1038\/s41591-020-0791-x"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107332"},{"key":"ref7","article-title":"Learning with a strong adversary","author":"Huang","year":"2015","journal-title":"arXiv:1511.03034"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.06083"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2019.8683044"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00034"},{"key":"ref11","first-page":"1","article-title":"Online adversarial purification based on self-supervised learning","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Shi"},{"key":"ref12","first-page":"1","article-title":"Robustness may be at odds with accuracy","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Tsipras"},{"key":"ref13","article-title":"Detecting adversarial samples from artifacts","author":"Feinman","year":"2017","journal-title":"arXiv:1703.00410"},{"key":"ref14","first-page":"1","article-title":"Characterizing adversarial subspaces using local intrinsic dimensionality","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Ma"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i11.17187"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3128572.3140444"},{"key":"ref17","first-page":"274","article-title":"Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples","volume-title":"Proc. 35th Int. Conf. Mach. Learn. (ICML)","author":"Athalye"},{"key":"ref18","first-page":"1","article-title":"The intrinsic dimension of images and its impact on learning","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Pope"},{"key":"ref19","first-page":"1","article-title":"On detecting adversarial perturbations","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Metzen"},{"key":"ref20","article-title":"On the (statistical) detection of adversarial examples","author":"Grosse","year":"2017","journal-title":"arXiv:1702.06280"},{"key":"ref21","article-title":"Adversarial and clean data are not twins","author":"Gong","year":"2017","journal-title":"arXiv:1704.04960"},{"key":"ref22","first-page":"1","article-title":"A simple unified framework for detecting Out-of-Distribution samples and adversarial attacks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"31","author":"Lee"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134057"},{"key":"ref24","first-page":"1","article-title":"Detecting and diagnosing adversarial images with class-conditional capsule reconstructions","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Qin"},{"key":"ref25","article-title":"MagNet and \u2018Efficient defenses against adversarial attacks\u2019 are not robust to adversarial examples","author":"Carlini","year":"2017","journal-title":"arXiv:1711.08478"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.49"},{"key":"ref27","first-page":"5102","article-title":"Domain agnostic learning with disentangled representations","volume-title":"Proc. 36th Int. Conf. Mach. Learn.","author":"Peng"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/285"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01246-5_3"},{"key":"ref30","first-page":"1","article-title":"Image-to-image translation for cross-domain disentanglement","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"31","author":"Gonzalez-Garcia"},{"key":"ref31","first-page":"2642","article-title":"Conditional image synthesis with auxiliary classifier GANs","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Odena"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i4.16424"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.282"},{"key":"ref34","article-title":"A boundary tilting persepective on the phenomenon of adversarial examples","author":"Tanay","year":"2016","journal-title":"arXiv:1608.07690"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/72.554192"},{"key":"ref36","first-page":"1","article-title":"Global coordination of local linear models","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"14","author":"Roweis"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1126\/science.290.5500.2323"},{"key":"ref38","first-page":"265","article-title":"Locally linear denoising on image manifolds","volume-title":"Proc. 13th Int. Conf. Artif. Intell. Statist.","volume":"9","author":"Gong"},{"key":"ref39","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1007\/978-3-319-57304-5_2","article-title":"Vector Spaces","volume-title":"Numerical Linear Algebra: Theory and Applications","author":"Beilina","year":"2017"},{"key":"ref40","article-title":"The space of transferable adversarial examples","author":"Tram\u00e8r","year":"2017","journal-title":"arXiv:1704.03453"},{"key":"ref41","first-page":"1","article-title":"Intrinsic dimension estimation using packing numbers","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"15","author":"K\u00e9gl"},{"key":"ref42","first-page":"1","article-title":"Maximum likelihood estimation of intrinsic dimension","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"17","author":"Levina"},{"key":"ref43","first-page":"1","article-title":"On the sample complexity of learning smooth cuts on a manifold","volume-title":"Proc. COLT","author":"Narayanan"},{"key":"ref44","first-page":"1","article-title":"Sample complexity of testing the manifold hypothesis","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"23","author":"Narayanan"},{"key":"ref45","article-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky","year":"2009"},{"key":"ref46","first-page":"1","article-title":"Matching networks for one shot learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"29","author":"Vinyals"},{"key":"ref47","article-title":"Foolbox: A Python toolbox to benchmark the robustness of machine learning models","author":"Rauber","year":"2017","journal-title":"arXiv:1707.04131"},{"key":"ref48","article-title":"Technical report on the CleverHans v2.1.0 adversarial examples library","volume-title":"arXiv:1610.00768","author":"Papernot","year":"2016"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref50","article-title":"SGDR: Stochastic gradient descent with warm restarts","author":"Loshchilov","year":"2016","journal-title":"arXiv:1608.03983"},{"key":"ref51","first-page":"1","article-title":"Adam: A method for stochastic optimization","volume-title":"Proc. ICLR","author":"Kingma"},{"key":"ref52","article-title":"Adversarial machine learning at scale","author":"Kurakin","year":"2016","journal-title":"arXiv:1611.01236"},{"key":"ref53","article-title":"On evaluating adversarial robustness","author":"Carlini","year":"2019","journal-title":"arXiv:1902.06705"},{"key":"ref54","article-title":"MobileNets: Efficient convolutional neural networks for mobile vision applications","author":"Howard","year":"2017","journal-title":"arXiv:1704.04861"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref56","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014","journal-title":"arXiv:1409.1556"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00071"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW50498.2020.00019"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01258-8_39"}],"container-title":["IEEE Transactions on Information Forensics and Security"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10206\/10319981\/10404044.pdf?arnumber=10404044","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,6]],"date-time":"2024-02-06T22:14:06Z","timestamp":1707257646000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10404044\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":59,"URL":"http:\/\/dx.doi.org\/10.1109\/tifs.2024.3352837","relation":{},"ISSN":["1556-6013","1556-6021"],"issn-type":[{"value":"1556-6013","type":"print"},{"value":"1556-6021","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]}}}