{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:24:14Z","timestamp":1726100654643},"reference-count":56,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"9","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["32170654","32000464"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Research Grants Council of the Hong Kong Special Administrative Region","award":["CityU 11203723"]},{"name":"Strategic Interdisciplinary Research Grant of City University of Hong Kong","award":["2021SIRG036"]},{"DOI":"10.13039\/100007567","name":"City University of Hong Kong","doi-asserted-by":"publisher","award":["CityU 9667265"],"id":[{"id":"10.13039\/100007567","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Artif. Intell."],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1109\/tai.2024.3387402","type":"journal-article","created":{"date-parts":[[2024,4,11]],"date-time":"2024-04-11T19:14:09Z","timestamp":1712862849000},"page":"4595-4606","source":"Crossref","is-referenced-by-count":0,"title":["A Unified Conditional Diffusion Framework for Dual Protein Targets-Based Bioactive Molecule Generation"],"prefix":"10.1109","volume":"5","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2458-5149","authenticated-orcid":false,"given":"Lei","family":"Huang","sequence":"first","affiliation":[{"name":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7179-2437","authenticated-orcid":false,"given":"Zheng","family":"Yuan","sequence":"additional","affiliation":[{"name":"Alibaba Damo Academy, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6978-6350","authenticated-orcid":false,"given":"Huihui","family":"Yan","sequence":"additional","affiliation":[{"name":"Zhejiang University, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5347-431X","authenticated-orcid":false,"given":"Rong","family":"Sheng","sequence":"additional","affiliation":[{"name":"Zhejiang University, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2366-4593","authenticated-orcid":false,"given":"Linjing","family":"Liu","sequence":"additional","affiliation":[{"name":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9028-5382","authenticated-orcid":false,"given":"Fuzhou","family":"Wang","sequence":"additional","affiliation":[{"name":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9009-2647","authenticated-orcid":false,"given":"Weidun","family":"Xie","sequence":"additional","affiliation":[{"name":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1432-3495","authenticated-orcid":false,"given":"Nanjun","family":"Chen","sequence":"additional","affiliation":[{"name":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3709-5053","authenticated-orcid":false,"given":"Fei","family":"Huang","sequence":"additional","affiliation":[{"name":"Alibaba Damo Academy, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8084-0904","authenticated-orcid":false,"given":"Songfang","family":"Huang","sequence":"additional","affiliation":[{"name":"Alibaba Damo Academy, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6062-733X","authenticated-orcid":false,"given":"Ka-Chun","family":"Wong","sequence":"additional","affiliation":[{"name":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9220-3101","authenticated-orcid":false,"given":"Yaoyun","family":"Zhang","sequence":"additional","affiliation":[{"name":"Alibaba Damo Academy, Hangzhou, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.3389\/fphar.2015.00205"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1038\/nbt1338"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1186\/s40169-017-0181-2"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1038\/nchembio.2519"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1021\/jm5006463"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/S0140-6736(00)02799-9"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejmech.2019.112025"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jmedchem.0c00491"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1021\/jm200063s"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jmedchem.2c00878"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1038\/nbt.1549"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.4155\/fmc.11.135"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-024-46569-1"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.3390\/ijms20143389"},{"key":"ref15","first-page":"15870","article-title":"Motif-based graph self-supervised learning for molecular property prediction","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Zhang","year":"2021"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbab451"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/380"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbab545"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbac446"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1039\/D1SC06946B"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1021\/acscentsci.7b00572"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403104"},{"article-title":"Data-efficient graph grammar learning for molecular generation","volume-title":"Proc. Int. Conf. Learn. Representations","year":"2021","author":"Guo","key":"ref23"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.9b00943"},{"key":"ref25","first-page":"7192","article-title":"GraphDF: A discrete flow model for molecular graph generation","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Luo","year":"2021"},{"article-title":"GraphAF: A flow-based autoregressive model for molecular graph generation","year":"2020","author":"Shi","key":"ref26"},{"key":"ref27","first-page":"2323","article-title":"Junction tree variational autoencoder for molecular graph generation","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Jin","year":"2018"},{"journal-title":"Proc. Workshop Theor. Found. Appl. Deep Generative Models (ICML)","article-title":"MolGAN: An implicit generative model for small molecular graphs","year":"2018","author":"Cao","key":"ref28"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v37i4.25639"},{"key":"ref30","first-page":"7566","article-title":"Symmetry-adapted generation of 3D point sets for the targeted discovery of molecules","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Gebauer","year":"2019"},{"key":"ref31","first-page":"4181","article-title":"E (n) equivariant normalizing flows","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Garcia Satorras","year":"2021"},{"key":"ref32","first-page":"8867","article-title":"Equivariant diffusion for molecule generation in 3D","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Hoogeboom","year":"2022"},{"article-title":"Molecular geometry-aware transformer for accurate 3D atomic system modeling","year":"2023","author":"Yuan","key":"ref33"},{"key":"ref34","first-page":"6229","article-title":"A 3D generative model for structure-based drug design","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Luo","year":"2021"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-020-0152-y"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbab333"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1126\/science.ade2574"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/gkaa1100"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1038\/nbt.1990"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btv010"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1038\/nchembio.530"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1038\/nbt.3374"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0181585"},{"issue":"31.10","key":"ref44","first-page":"5281","article-title":"RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling","volume":"8","author":"Landrum","year":"2013","journal-title":"Greg Landrum"},{"key":"ref45","first-page":"2256","article-title":"Deep unsupervised learning using nonequilibrium thermodynamics","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Sohl-Dickstein","year":"2015"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.8b00839"},{"article-title":"DiGress: Discrete denoising diffusion for graph generation","volume-title":"Proc. 11th Int. Conf. Learn. Representations","year":"2023","author":"Vignac","key":"ref47"},{"key":"ref48","first-page":"17981","article-title":"Structured denoising diffusion models in discrete state-spaces","volume":"34","author":"Austin","year":"2021","journal-title":"Proc. Adv. Neural Inf. Process. Syst."},{"article-title":"A generalization of transformer networks to graphs","year":"2020","author":"Dwivedi","key":"ref49"},{"article-title":"Layer normalization","year":"2016","author":"Ba","key":"ref50"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.3389\/fphar.2020.565644"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1186\/s40360-018-0282-6"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1021\/cc9800071"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1016\/j.addr.2012.09.019"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.8b00234"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.1c00600"}],"container-title":["IEEE Transactions on Artificial Intelligence"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9078688\/10673734\/10497533.pdf?arnumber=10497533","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T04:43:05Z","timestamp":1726029785000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10497533\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":56,"journal-issue":{"issue":"9"},"URL":"https:\/\/doi.org\/10.1109\/tai.2024.3387402","relation":{},"ISSN":["2691-4581"],"issn-type":[{"type":"electronic","value":"2691-4581"}],"subject":[],"published":{"date-parts":[[2024,9]]}}}