iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/MM.2020.3009475
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:05:09Z","timestamp":1728176709040},"reference-count":13,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"5","license":[{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"am","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["CN#1703812","ECCS#1609823","CCF#1553192"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000028","name":"Semiconductor Research Corporation","doi-asserted-by":"publisher","award":["#2019-SD-2884"],"id":[{"id":"10.13039\/100000028","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000181","name":"Air Force Office of Scientific Research","doi-asserted-by":"publisher","award":["#FA9550-17-1-0274"],"id":[{"id":"10.13039\/100000181","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["#R01EB028350"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006602","name":"Air Force Research Laboratory","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006602","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000185","name":"Defense Advanced Research Projects Agency","doi-asserted-by":"publisher","award":["#FA8650-20-2-7009","#HR0011-18-C-0020"],"id":[{"id":"10.13039\/100000185","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100004318","name":"Microsoft","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100004318","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006785","name":"Google","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006785","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100005144","name":"Qualcomm","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100005144","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014121","name":"Xilinx","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100014121","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Micro"],"published-print":{"date-parts":[[2020,9,1]]},"DOI":"10.1109\/mm.2020.3009475","type":"journal-article","created":{"date-parts":[[2020,7,15]],"date-time":"2020-07-15T21:26:59Z","timestamp":1594848419000},"page":"37-45","source":"Crossref","is-referenced-by-count":30,"title":["ReLeQ : A Reinforcement Learning Approach for Automatic Deep Quantization of Neural Networks"],"prefix":"10.1109","volume":"40","author":[{"given":"Ahmed T.","family":"Elthakeb","sequence":"first","affiliation":[{"name":"University of California San Diego"}]},{"given":"Prannoy","family":"Pilligundla","sequence":"additional","affiliation":[{"name":"University of California San Diego"}]},{"given":"Fatemehsadat","family":"Mireshghallah","sequence":"additional","affiliation":[{"name":"University of California San Diego"}]},{"given":"Amir","family":"Yazdanbakhsh","sequence":"additional","affiliation":[{"name":"Google Brain"}]},{"given":"Hadi","family":"Esmaeilzadeh","sequence":"additional","affiliation":[{"name":"University of California San Diego"}]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01234-2_48"},{"key":"ref11","article-title":"Quantized neural networks: training neural networks with low precision weights and activations","volume":"18","author":"hubara","year":"2017","journal-title":"J Mach Learn Res"},{"key":"ref12","article-title":"HAQ: Hardware-aware automated quantization","author":"wang","year":"2018","journal-title":"arXiv 1811 08886"},{"key":"ref13","article-title":"Releq: A reinforcement learning approach for deep quantization of neural networks","author":"elthakeb","year":"2018","journal-title":"arXiv 1811 01704"},{"key":"ref4","article-title":"Proximal policy optimization algorithms","author":"schulman","year":"2017","journal-title":"arXiv 1707 06347"},{"key":"ref3","article-title":"Trained ternary quantization","author":"zhu","year":"0","journal-title":"Proc ICLR"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2016.7783722"},{"key":"ref5","article-title":"TVM: End-to-end optimization stack for deep learning","author":"chen","year":"2017","journal-title":"arXiv 1802 04799"},{"key":"ref8","article-title":"A unified framework of DNN weight pruning and weight clustering\/quantization using ADMM","author":"ye","year":"2018","journal-title":"arXiv 1811 01907"},{"key":"ref7","article-title":"WRPN: Wide reduced-precision networks","author":"mishra","year":"0","journal-title":"Proc ICLR"},{"key":"ref2","article-title":"DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients","author":"zhou","year":"2016","journal-title":"CoRR"},{"key":"ref1","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref9","article-title":"Neural architecture search with reinforcement learning","author":"zoph","year":"0","journal-title":"Proc ICLR"}],"container-title":["IEEE Micro"],"original-title":[],"link":[{"URL":"https:\/\/ieeexplore.ieee.org\/ielam\/40\/9186208\/9141414-aam.pdf","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/40\/9186208\/09141414.pdf?arnumber=9141414","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,4]],"date-time":"2022-05-04T20:01:41Z","timestamp":1651694501000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9141414\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,1]]},"references-count":13,"journal-issue":{"issue":"5"},"URL":"http:\/\/dx.doi.org\/10.1109\/mm.2020.3009475","relation":{},"ISSN":["0272-1732","1937-4143"],"issn-type":[{"value":"0272-1732","type":"print"},{"value":"1937-4143","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,9,1]]}}}