iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/MICRO50266.2020.00064
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T05:04:25Z","timestamp":1725167065469},"reference-count":50,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100006602","name":"Air Force Research Laboratory","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006602","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1109\/micro50266.2020.00064","type":"proceedings-article","created":{"date-parts":[[2020,11,11]],"date-time":"2020-11-11T21:55:22Z","timestamp":1605131722000},"source":"Crossref","is-referenced-by-count":42,"title":["Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network Training"],"prefix":"10.1109","author":[{"given":"Dingqing","family":"Yang","sequence":"first","affiliation":[]},{"given":"Amin","family":"Ghasemazar","sequence":"additional","affiliation":[]},{"given":"Xiaowei","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Maximilian","family":"Golub","sequence":"additional","affiliation":[]},{"given":"Guy","family":"Lemieux","sequence":"additional","affiliation":[]},{"given":"Mieszko","family":"Lis","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/FPL.2016.7577315"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"ref33","article-title":"Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization","author":"mostafa","year":"2019","journal-title":"ICML"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-018-04316-3"},{"key":"ref31","article-title":"Revisiting small batch training for deep neural networks","author":"masters","year":"2018"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.18637\/jss.v008.i14"},{"key":"ref37","article-title":"PyTorch: An Imperative Style, High-Performance Deep Learning Library","author":"paszke","year":"2019","journal-title":"NIPS"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/3079856.3080254"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ISPASS.2019.00042"},{"key":"ref34","article-title":"NVIDIA Deep Learning Accelerator (NVDLA)","year":"2017"},{"key":"ref28","article-title":"Pruning filters for efficient convnets","author":"li","year":"2017","journal-title":"ICLRE"},{"key":"ref27","article-title":"Measuring the intrinsic dimension of objective landscapes","author":"li","year":"2018","journal-title":"ICLRE"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.541"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001138"},{"key":"ref1","article-title":"Extremely large minibatch SGD: training ResNet-50 on ImageNet in 15 minutes","author":"akiba","year":"2017"},{"key":"ref20","article-title":"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift","author":"ioffe","year":"2015","journal-title":"ICML"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3079856.3080246"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2018.00070"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/3352460.3358252"},{"key":"ref23","article-title":"Learning multiple layers of features from tiny images","author":"krizhevsky","year":"2009","journal-title":"Master’s thesis"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_3"},{"key":"ref25","article-title":"Optimal brain damage","author":"lecun","year":"1990","journal-title":"NIPS"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2016.7783723"},{"key":"ref10","article-title":"Full Deep Neural Network Training on a Pruned Weight Budget","author":"golub","year":"2019","journal-title":"SysML"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1145\/3352460.3358291"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/3079856.3080221"},{"key":"ref12","article-title":"Accurate, large minibatch sgd: Training imagenet in 1 hour","author":"goyal","year":"2017"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001163"},{"key":"ref14","article-title":"Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding","author":"han","year":"2016","journal-title":"ICLRE"},{"key":"ref15","article-title":"Learning both weights and connections for efficient neural network","author":"han","year":"2015","journal-title":"NIPS"},{"key":"ref16","article-title":"Second order derivatives for network pruning: Optimal brain surgeon","author":"hassibi","year":"1993","journal-title":"NIPS"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.123"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_26"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2016.7783725"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/2541940.2541967"},{"key":"ref5","article-title":"Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks","author":"bulu\u00e7","year":"2009","journal-title":"SPAA"},{"key":"ref8","article-title":"The lottery ticket hypothesis: Finding sparse, trainable neural networks","author":"frankle","year":"2019","journal-title":"ICLRE"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/JETCAS.2019.2910232"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1145\/3307650.3322263"},{"key":"ref9","article-title":"Understanding the difficulty of training deep feedforward neural networks","author":"glorot","year":"2010","journal-title":"AISTATS"},{"key":"ref46","author":"zagoruyko","year":"2015","journal-title":"Torch | 92 45% on CIFAR-10 in Torch"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2017.2779140"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1145\/2684746.2689060"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.5244\/C.30.87"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/ICCAD45719.2019.8942149"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1145\/2847263.2847276"},{"key":"ref44","article-title":"Dnn dataflow choice is overrated","author":"yang","year":"2018"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.643"}],"event":{"name":"2020 53rd Annual IEEE\/ACM International Symposium on Microarchitecture (MICRO)","location":"Athens, Greece","start":{"date-parts":[[2020,10,17]]},"end":{"date-parts":[[2020,10,21]]}},"container-title":["2020 53rd Annual IEEE\/ACM International Symposium on Microarchitecture (MICRO)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9251289\/9251849\/09251866.pdf?arnumber=9251866","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,28]],"date-time":"2022-06-28T21:58:24Z","timestamp":1656453504000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9251866\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":50,"URL":"https:\/\/doi.org\/10.1109\/micro50266.2020.00064","relation":{},"subject":[],"published":{"date-parts":[[2020,10]]}}}