iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/JIOT.2023.3313118
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T06:33:45Z","timestamp":1723790025285},"reference-count":38,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"4","license":[{"start":{"date-parts":[[2024,2,15]],"date-time":"2024-02-15T00:00:00Z","timestamp":1707955200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,2,15]],"date-time":"2024-02-15T00:00:00Z","timestamp":1707955200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,15]],"date-time":"2024-02-15T00:00:00Z","timestamp":1707955200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62276202","62106186"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100017596","name":"Natural Science Basic Research Plan in Shaanxi Province of China","doi-asserted-by":"publisher","award":["2022JQ-670"],"id":[{"id":"10.13039\/501100017596","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["QTZX22047"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2023T160501"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005320","name":"High-Performance Computing Platform of Xidian University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005320","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Internet Things J."],"published-print":{"date-parts":[[2024,2,15]]},"DOI":"10.1109\/jiot.2023.3313118","type":"journal-article","created":{"date-parts":[[2023,9,11]],"date-time":"2023-09-11T19:10:20Z","timestamp":1694459420000},"page":"6916-6927","source":"Crossref","is-referenced-by-count":2,"title":["Prototype-Based Decentralized Federated Learning for the Heterogeneous Time-Varying IoT Systems"],"prefix":"10.1109","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0578-6001","authenticated-orcid":false,"given":"Baosheng","family":"Li","sequence":"first","affiliation":[{"name":"School of Mathematics and Statistics, Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3853-0771","authenticated-orcid":false,"given":"Weifeng","family":"Gao","sequence":"additional","affiliation":[{"name":"School of Mathematics and Statistics, Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi’an, China"}]},{"given":"Jin","family":"Xie","sequence":"additional","affiliation":[{"name":"School of Mathematics and Statistics, Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0415-8556","authenticated-orcid":false,"given":"Maoguo","family":"Gong","sequence":"additional","affiliation":[{"name":"Key Laboratory of Intelligent Perception and Image Understanding, International Research Center for Intelligent Perception and Computation, Ministry of Education, Xidian University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1226-2801","authenticated-orcid":false,"given":"Ling","family":"Wang","sequence":"additional","affiliation":[{"name":"Department of Automation, Tsinghua University, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8709-5839","authenticated-orcid":false,"given":"Hong","family":"Li","sequence":"additional","affiliation":[{"name":"School of Mathematics and Statistics, Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi’an, China"}]}],"member":"263","reference":[{"key":"ref1","first-page":"1273","article-title":"Communicationefficient learning of deep networks from decentralized data","volume-title":"Proc. PMLR","author":"McMahan"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1561\/9781680837896"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/tvt.2021.3077893"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/jiot.2022.3172114"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/jiot.2020.3014370"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/twc.2021.3088910"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/tii.2022.3161517"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/jstsp.2022.3224590"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/jiot.2021.3095077"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/tfuzz.2023.3296572"},{"key":"ref11","first-page":"429","article-title":"Federated optimization in heterogeneous networks","volume-title":"Proc. MLSys","volume":"2","author":"Li"},{"key":"ref12","first-page":"5132","article-title":"SCAFFOLD: Stochastic controlled averaging for federated learning","volume-title":"Proc. PMLR","volume":"119","author":"Karimireddy"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01057"},{"key":"ref14","first-page":"7611","article-title":"Tackling the objective inconsistency problem in heterogeneous federated optimization","volume-title":"Proc. NeurIPS","volume":"33","author":"Wang"},{"key":"ref15","first-page":"1","article-title":"FedBN: Federated learning on non-IID features via local batch normalization","volume-title":"Proc. ICLR","author":"Li"},{"key":"ref16","article-title":"FedMD: Heterogenous federated learning via model distillation","author":"Li","year":"2019","journal-title":"arXiv:1910.03581"},{"key":"ref17","first-page":"2351","article-title":"Ensemble distillation for robust model fusion in federated learning","volume-title":"Proc. NeurIPS","volume":"33","author":"Lin"},{"key":"ref18","first-page":"3557","article-title":"Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach","volume-title":"Proc. NeurIPS","volume":"33","author":"Fallah"},{"key":"ref19","first-page":"21394","article-title":"Personalized federated learning with moreau envelopes","volume-title":"Proc. NeurIPS","volume":"33","author":"Dinh"},{"key":"ref20","first-page":"6357","article-title":"Ditto: Fair and robust federated learning through personalization","volume-title":"Proc. ICML","volume":"139","author":"Li"},{"key":"ref21","first-page":"2089","article-title":"Exploiting shared representations for personalized federated learning","volume-title":"Proc. ICML","volume":"139","author":"Collins"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i9.16960"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v36i8.20819"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/jsac.2021.3118344"},{"key":"ref25","article-title":"Decentralized federated learning: A segmented gossip approach","author":"Hu","year":"2019","journal-title":"arXiv:1908.07782"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.23919\/IFIPNetworking52078.2021.9472790"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/tsipn.2022.3151242"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CDC51059.2022.9993258"},{"key":"ref29","article-title":"Decentralized federated learning of deep neural networks on non-iid data","author":"Onoszko","year":"2021","journal-title":"arXiv:2107.08517"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/tbdata.2022.3222971"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-023-38569-4"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/jiot.2022.3175149"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/tnse.2022.3225444"},{"key":"ref34","first-page":"1","article-title":"Personalized federated learning with first order model optimization.","volume-title":"Proc. ICLR","author":"Zhang"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/tnsm.2023.3252818"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1360\/nso\/20220043"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1093\/acprof:oso\/9780198506263.001.0001"},{"key":"ref38","first-page":"4077","article-title":"Prototypical networks for few-shot learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Snell"}],"container-title":["IEEE Internet of Things Journal"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6488907\/10419857\/10246848.pdf?arnumber=10246848","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,14]],"date-time":"2024-02-14T15:01:24Z","timestamp":1707922884000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10246848\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2,15]]},"references-count":38,"journal-issue":{"issue":"4"},"URL":"https:\/\/doi.org\/10.1109\/jiot.2023.3313118","relation":{},"ISSN":["2327-4662","2372-2541"],"issn-type":[{"value":"2327-4662","type":"electronic"},{"value":"2372-2541","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,2,15]]}}}