{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T05:09:04Z","timestamp":1725080944056},"reference-count":51,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"11","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Beijing Natural Science Foundation-Haidian Original Innovation","award":["L182034"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61972046","62002025"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004826","name":"Beijing Natural Science Foundation","doi-asserted-by":"publisher","award":["4202051"],"id":[{"id":"10.13039\/501100004826","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["2019XD-A12"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Scientific Research Seed Fund of Peking University First Hospital","award":["2021SF45"]},{"name":"BUPT Excellent Ph.D. Students Foundation","award":["CX2022222","CX2021136"]},{"name":"BUPT innovation and entrepreneurship","award":["2022-YC-A138","2022-YC-A132"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE J. Biomed. Health Inform."],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1109\/jbhi.2022.3199110","type":"journal-article","created":{"date-parts":[[2022,8,15]],"date-time":"2022-08-15T19:44:30Z","timestamp":1660592670000},"page":"5506-5517","source":"Crossref","is-referenced-by-count":4,"title":["A Scalable Graph-Based Framework for Multi-Organ Histology Image Classification"],"prefix":"10.1109","volume":"26","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9923-7427","authenticated-orcid":false,"given":"Yu","family":"Bai","sequence":"first","affiliation":[{"name":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"}]},{"given":"Yue","family":"Mi","sequence":"additional","affiliation":[{"name":"Department of Urology, Peking University First Hospital, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5814-7318","authenticated-orcid":false,"given":"Yihan","family":"Su","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1210-8735","authenticated-orcid":false,"given":"Bo","family":"Zhang","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3248-7063","authenticated-orcid":false,"given":"Zheng","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Modern Post, Beijing University of Posts and Telecommunications, Beijing, China"}]},{"given":"Jingyun","family":"Wu","sequence":"additional","affiliation":[{"name":"Department of Radiology, Peking University First Hospital, Beijing, China"}]},{"given":"Haiwen","family":"Huang","sequence":"additional","affiliation":[{"name":"Department of Urology, Peking University First Hospital, Beijing, China"}]},{"given":"Yongping","family":"Xiong","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0631-9747","authenticated-orcid":false,"given":"Xiangyang","family":"Gong","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6418-8087","authenticated-orcid":false,"given":"Wendong","family":"Wang","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"}]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00050"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI45749.2020.9098534"},{"key":"ref33","first-page":"874","article-title":"Spectral clustering with graph neural networks for graph pooling","author":"bianchi","year":"0","journal-title":"Proc 37th Int Conf Mach Learn"},{"key":"ref32","article-title":"Graph attention networks","author":"veli?kovi?","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.3389\/fbioe.2019.00053"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2865709"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.05.010"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1038\/sdata.2017.14"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-017-16516-w"},{"key":"ref34","first-page":"5998","article-title":"Attention is all you need","author":"vaswani","year":"0","journal-title":"Adv in Neural Info Proc Syst"},{"key":"ref28","first-page":"11984","article-title":"Implicit graph neural networks","author":"gu","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.266"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2021.3085712"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00801"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compmedimag.2011.02.006"},{"key":"ref20","first-page":"4171","article-title":"BERT: Pre-training of deep bidirectional transformers for language understanding","volume":"1","author":"devlin","year":"0","journal-title":"Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol"},{"key":"ref22","article-title":"Language models are unsupervised multitask learners","volume":"1","author":"radford","year":"2019","journal-title":"OpenAIRE blog"},{"key":"ref21","first-page":"1024","article-title":"Inductive representation learning on large graphs","volume":"30","author":"hamilton","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref24","article-title":"PanNuke dataset extension, insights and baselines","author":"gamper","year":"2020"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2017.2677499"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.101563"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref51","article-title":"AHAT-Net: A hierarchical transformer graph neural network for grading of colorectal cancer histology images","author":"su","year":"0","journal-title":"Proc Brit Mach Vis Conf"},{"key":"ref10","article-title":"Layer normalization","author":"ba","year":"2016","journal-title":"arXiv 1607 06450"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-00934-2_22"},{"key":"ref40","article-title":"MobileNets: Efficient convolutional neural networks for mobile vision applications","author":"howard","year":"2017"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref13","article-title":"How powerful are graph neural networks","author":"xu","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref14","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref15","article-title":"Representation learning on graphs with jumping knowledge networks","author":"xu","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref16","first-page":"4805","article-title":"Hierarchical graph representation learning with differentiable pooling","volume":"31","author":"ying","year":"0","journal-title":"Proc 32nd Int Conf Neural Inf Process Syst"},{"key":"ref17","first-page":"3734","article-title":"Self-attention graph pooling","author":"lee","year":"0","journal-title":"Proc 36th Int Conf Mach Learn"},{"key":"ref18","article-title":"Semi-supervised classification with graph convolutional networks","author":"kipf","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-30535-1"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-87193-2_4"},{"key":"ref3","first-page":"1691","article-title":"Generative pretraining from pixels","author":"chen","year":"0","journal-title":"Proc 37th Int Conf Mach Learn"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3390\/diagnostics11081384"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-87199-4_16"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1117\/12.2510665"},{"key":"ref7","article-title":"An image is worth $16\\times 16$ words: Transformers for image recognition at scale","author":"dosovitskiy","year":"0","journal-title":"Proc 9th Int Conf Learn Representations"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.195"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1117\/12.2550114"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1615\/CritRevOncog.v14.i2-3.10"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2844175"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2971006"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-60365-6_20"},{"key":"ref44","article-title":"Representation learning with contrastive predictive coding","author":"oord","year":"2018"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/bth933"}],"container-title":["IEEE Journal of Biomedical and Health Informatics"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6221020\/9945616\/09858028.pdf?arnumber=9858028","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,12]],"date-time":"2022-12-12T19:33:58Z","timestamp":1670873638000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9858028\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":51,"journal-issue":{"issue":"11"},"URL":"http:\/\/dx.doi.org\/10.1109\/jbhi.2022.3199110","relation":{},"ISSN":["2168-2194","2168-2208"],"issn-type":[{"value":"2168-2194","type":"print"},{"value":"2168-2208","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,11]]}}}