iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/ICIP.2019.8803522
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T19:49:36Z","timestamp":1729626576138,"version":"3.28.0"},"reference-count":22,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1109\/icip.2019.8803522","type":"proceedings-article","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T15:32:48Z","timestamp":1566833568000},"page":"4579-4583","source":"Crossref","is-referenced-by-count":3,"title":["Evaluating Crowd Density Estimators Via Their Uncertainty Bounds"],"prefix":"10.1109","author":[{"given":"Jennifer","family":"Vandoni","sequence":"first","affiliation":[]},{"given":"Emanuel","family":"Aldea","sequence":"additional","affiliation":[]},{"given":"Sylvie Le","family":"Hegarat-Mascle","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"The Journal of Machine Learning Research"},{"volume":"118","journal-title":"Bayesian learning for neural networks","year":"2012","author":"neal","key":"ref11"},{"article-title":"Auto-encoding variational bayes","year":"2013","author":"kingma","key":"ref12"},{"article-title":"Weight uncertainty in neural networks","year":"2015","author":"blundell","key":"ref13"},{"key":"ref14","first-page":"6402","article-title":"Simple and scalable predictive uncertainty estimation using deep ensembles","author":"lakshminarayanan","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref15","doi-asserted-by":"crossref","DOI":"10.1515\/9780691214696","volume":"1","author":"shafer","year":"1976","journal-title":"A Mathematical Theory of Evidence"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/0004-3702(94)90026-4"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijar.2018.10.008"},{"key":"ref18","first-page":"1324","article-title":"Learning to count objects in images","author":"lempitsky","year":"2010","journal-title":"Advances in neural information processing systems"},{"key":"ref19","first-page":"829","article-title":"Integral histogram: A fast way to extract histograms in cartesian spaces","volume":"1","author":"porikli","year":"2005","journal-title":"Computer Vision and Pattern Recognition 2005 CVPR 2005 IEEE Computer Society Conference on"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46478-7_38"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/AVSS.2017.8078491"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijar.2015.05.002"},{"key":"ref5","first-page":"1091","article-title":"Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes","author":"li","year":"2018","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2018.00162"},{"key":"ref7","first-page":"1050","article-title":"Dropout as a bayesian approximation: Representing model uncertainty in deep learning","author":"gal","year":"2016","journal-title":"International Conference on Machine Learning"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.70"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2017.07.007"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/AVSS.2017.8078508"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijar.2018.11.007"},{"article-title":"Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding","year":"2015","author":"kendall","key":"ref22"},{"key":"ref21","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"ronneberger","year":"2015","journal-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention"}],"event":{"name":"2019 IEEE International Conference on Image Processing (ICIP)","start":{"date-parts":[[2019,9,22]]},"location":"Taipei, Taiwan","end":{"date-parts":[[2019,9,25]]}},"container-title":["2019 IEEE International Conference on Image Processing (ICIP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8791230\/8799366\/08803522.pdf?arnumber=8803522","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,26]],"date-time":"2022-09-26T08:54:09Z","timestamp":1664182449000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8803522\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":22,"URL":"http:\/\/dx.doi.org\/10.1109\/icip.2019.8803522","relation":{},"subject":[],"published":{"date-parts":[[2019,9]]}}}