{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T21:51:04Z","timestamp":1730238664114,"version":"3.28.0"},"reference-count":53,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1109\/icde55515.2023.00265","type":"proceedings-article","created":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T17:51:13Z","timestamp":1690393873000},"page":"3453-3466","source":"Crossref","is-referenced-by-count":2,"title":["Tele-Knowledge Pre-training for Fault Analysis"],"prefix":"10.1109","author":[{"given":"Zhuo","family":"Chen","sequence":"first","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Wen","family":"Zhang","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Yufeng","family":"Huang","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Mingyang","family":"Chen","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Yuxia","family":"Geng","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Hongtao","family":"Yu","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Zhen","family":"Bi","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Yichi","family":"Zhang","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Zhen","family":"Yao","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]},{"given":"Wenting","family":"Song","sequence":"additional","affiliation":[{"name":"NAIE PDU, Huawei Technologies Co., Ltd.,Xi’an,China"}]},{"given":"Xinliang","family":"Wu","sequence":"additional","affiliation":[{"name":"NAIE PDU, Huawei Technologies Co., Ltd.,Xi’an,China"}]},{"given":"Yi","family":"Yang","sequence":"additional","affiliation":[{"name":"NAIE PDU, Huawei Technologies Co., Ltd.,Xi’an,China"}]},{"given":"Mingyi","family":"Chen","sequence":"additional","affiliation":[{"name":"NAIE PDU, Huawei Technologies Co., Ltd.,Xi’an,China"}]},{"given":"Zhaoyang","family":"Lian","sequence":"additional","affiliation":[{"name":"NAIE PDU, Huawei Technologies Co., Ltd.,Xi’an,China"}]},{"given":"Yingying","family":"Li","sequence":"additional","affiliation":[{"name":"NAIE PDU, Huawei Technologies Co., Ltd.,Xi’an,China"}]},{"given":"Lei","family":"Cheng","sequence":"additional","affiliation":[{"name":"NAIE PDU, Huawei Technologies Co., Ltd.,Xi’an,China"}]},{"given":"Huajun","family":"Chen","sequence":"additional","affiliation":[{"name":"Zhejiang University,Hangzhou,China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE51399.2021.00280"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1145\/3502223.3502232"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3474085.3475648"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/1804669.1804675"},{"key":"ref5","first-page":"2787","article-title":"Translating embeddings for modeling multi-relational data","author":"Bordes","year":"2013","journal-title":"NIPS"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v28i1.8870"},{"key":"ref7","first-page":"2071","article-title":"Complex embeddings for simple link prediction","volume-title":"ICML, ser. JMLR Workshop and Conference Proceedings","volume":"48","author":"Trouillon"},{"article-title":"Rotate: Knowledge graph embedding by relational rotation in complex space","volume-title":"ICLR (Poster)","year":"2019","author":"Sun","key":"ref8"},{"key":"ref9","first-page":"4171","article-title":"BERT: pre-training of deep bidirectional transformers for language understanding","volume-title":"NAACLHLT (1)","author":"Devlin","year":"2019"},{"journal-title":"CoRR","article-title":"ERNIE: enhanced representation through knowledge integration","year":"2019","author":"Sun","key":"ref10"},{"article-title":"Improving language understanding by generative pre-training","year":"2018","author":"Radford","key":"ref11"},{"journal-title":"CoRR","article-title":"Roberta: A robustly optimized BERT pretraining approach","year":"2019","author":"Liu","key":"ref12"},{"key":"ref13","first-page":"1725","article-title":"Deepfm: A factorization-machine based neural network for CTR prediction","volume-title":"IJCAI","author":"Guo","year":"2017"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3357384.3357925"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467077"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3560815"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2021.acl-long.295"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3511998"},{"key":"ref19","first-page":"5426","article-title":"Table pre-training: A survey on model architectures, pretraining objectives, and downstream tasks","volume-title":"IJCAI","author":"Dong","year":"2022"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.acl-main.745"},{"article-title":"TAPEX: table pre-training via learning a neural SQL executor","volume-title":"ICLR","year":"2022","author":"Liu","key":"ref21"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2021.naacl-main.270"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.coling-main.179"},{"key":"ref24","first-page":"528","article-title":"Table-former: Robust transformer modeling for table-text encoding","volume-title":"ACL (1)","author":"Yang","year":"2022"},{"article-title":"ELECTRA: pretraining text encoders as discriminators rather than generators","volume-title":"ICLR","year":"2020","author":"Clark","key":"ref25"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2021.emnlp-main.552"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/TASLP.2021.3124365"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/3579051.3579053"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1139"},{"journal-title":"CoRR","article-title":"KG-BERT: BERT for knowledge graph completion","year":"2019","author":"Yao","key":"ref30"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P16-1162"},{"article-title":"Lora: Low-rank adaptation of large language models","volume-title":"ICLR","year":"2022","author":"Hu","key":"ref32"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00781"},{"article-title":"Neural photo editing with introspective adversarial networks","volume-title":"ICLR (Poster)","year":"2017","author":"Brock","key":"ref34"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i05.6428"},{"journal-title":"CoRR","article-title":"Should you mask 15% in masked language modeling?","year":"2022","author":"Wettig","key":"ref36"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2021.emnlp-demo.6"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1162\/tacl_a_00360"},{"article-title":"Semi-supervised classification with graph convolutional networks","volume-title":"ICLR (Poster)","year":"2017","author":"Kipf","key":"ref39"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-39878-1_16"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2858826"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1162\/tacl_a_00300"},{"article-title":"Structbert: Incorporating language structures into pre-training for deep language understanding","volume-title":"ICLR","year":"2020","author":"Wang","key":"ref43"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i03.5681"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.acl-main.398"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467434"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.3301297"},{"key":"ref48","first-page":"5429","article-title":"Multi-view knowledge graph embedding for entity alignment","volume-title":"IJCAI","author":"Zhang","year":"2019"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN52387.2021.9534113"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1145\/3510003.3510155"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.116263"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/ASE51524.2021.9678773"},{"journal-title":"CoRR","article-title":"Deep learning for anomaly detection in log data: A survey","year":"2022","author":"Landauer","key":"ref53"}],"event":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","start":{"date-parts":[[2023,4,3]]},"location":"Anaheim, CA, USA","end":{"date-parts":[[2023,4,7]]}},"container-title":["2023 IEEE 39th International Conference on Data Engineering (ICDE)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10184508\/10184509\/10184605.pdf?arnumber=10184605","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T14:36:06Z","timestamp":1709303766000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10184605\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":53,"URL":"http:\/\/dx.doi.org\/10.1109\/icde55515.2023.00265","relation":{},"subject":[],"published":{"date-parts":[[2023,4]]}}}