iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/HPCA53966.2022.00009
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T18:10:56Z","timestamp":1730225456799,"version":"3.28.0"},"reference-count":35,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1109\/hpca53966.2022.00009","type":"proceedings-article","created":{"date-parts":[[2022,5,17]],"date-time":"2022-05-17T15:50:17Z","timestamp":1652802617000},"page":"1-11","source":"Crossref","is-referenced-by-count":1,"title":["Direct Spatial Implementation of Sparse Matrix Multipliers for Reservoir Computing"],"prefix":"10.1109","author":[{"given":"Matthew","family":"Denton","sequence":"first","affiliation":[{"name":"Google Research"}]},{"given":"Herman","family":"Schmit","sequence":"additional","affiliation":[{"name":"Google Research"}]}],"member":"263","reference":[{"key":"ref33","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.neunet.2019.03.005","article-title":"Recent advances in physical reservoir computing: A review","volume":"115","author":"tanaka","year":"2019","journal-title":"Neural Networks"},{"article-title":"EfficientNet: Rethinking model scaling for convolutional neural networks","year":"2020","author":"tan","key":"ref32"},{"key":"ref31","article-title":"Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural networks","volume":"abs 1712 1507","author":"sharma","year":"2017","journal-title":"CoRR"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1145\/3307650.3322255"},{"journal-title":"Virtex UltraScale+","year":"2020","key":"ref35"},{"article-title":"Attention is all you need","year":"2017","author":"vaswani","key":"ref34"},{"article-title":"UCI machine learning repository","year":"2017","author":"dua","key":"ref10"},{"key":"ref11","article-title":"The lottery ticket hypothesis: Training pruned neural networks","volume":"abs 1803 3635","author":"frankle","year":"2018","journal-title":"CoRR"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/SC41405.2020.00021"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/INISTA49547.2020.9194611"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001163"},{"article-title":"Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding","year":"2016","author":"han","key":"ref15"},{"article-title":"The Hardware Lottery","year":"2020","author":"hooker","key":"ref16"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3467017"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1145\/3079856.3080246"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/LCA.2016.2597140"},{"article-title":"Dynamic routing between capsules","year":"2017","author":"sabour","key":"ref28"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/3317550.3321441"},{"key":"ref27","article-title":"MLPerf inference benchmark","volume":"abs 1911 2549","author":"reddi","year":"2019","journal-title":"CoRR"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TEC.1961.5219227"},{"key":"ref6","article-title":"cuDNN: Efficient primitives for deep learning","volume":"abs 1410 759","author":"chetlur","year":"2014","journal-title":"CoRR"},{"first-page":"471","article-title":"An overview of reservoir computing: Theory, applications and implementations","year":"2007","author":"schrauwen","key":"ref29"},{"key":"ref5","first-page":"1","article-title":"Reservoir computing approaches for representation and classification of multivariate time series","author":"bianchi","year":"2020","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"article-title":"Reservoir computing with stochastic bitstream neurons","year":"0","author":"verstraeten","key":"ref8"},{"key":"ref7","article-title":"The UCR time series archive","volume":"abs 1810 7758","author":"dau","year":"2018","journal-title":"CoRR"},{"journal-title":"Belgian-Dutch Conference on Machine Learning","article-title":"FPGA implementation of reservoir computing with online learning","year":"2015","author":"antonik","key":"ref2"},{"article-title":"Reservoir computing meets recurrent kernels and structured transforms","year":"2020","author":"dong","key":"ref9"},{"key":"ref1","article-title":"Bit-pragmatic deep neural network computing","volume":"abs 1610 6920","author":"albericio","year":"2016","journal-title":"CoRR"},{"year":"0","author":"karpathy","key":"ref20"},{"article-title":"Integer echo state networks: Efficient reservoir computing for digital hardware","year":"2020","author":"kleyko","key":"ref22"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2019.01.002"},{"year":"2017","key":"ref24","article-title":"Nvidia Tesla V100 GPU architecture"},{"key":"ref23","first-page":"573","article-title":"Bit-serial neural networks","author":"murray","year":"1988","journal-title":"Neural Information Processing Systems"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA47549.2020.00015"},{"journal-title":"NVIDIA cuSparse API Reference","year":"2020","key":"ref25"}],"event":{"name":"2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)","start":{"date-parts":[[2022,4,2]]},"location":"Seoul, Korea, Republic of","end":{"date-parts":[[2022,4,6]]}},"container-title":["2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9773179\/9773180\/09773205.pdf?arnumber=9773205","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,20]],"date-time":"2022-06-20T17:34:25Z","timestamp":1655746465000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9773205\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":35,"URL":"http:\/\/dx.doi.org\/10.1109\/hpca53966.2022.00009","relation":{},"subject":[],"published":{"date-parts":[[2022,4]]}}}