iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/DFT63277.2024.10753546
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,28]],"date-time":"2024-11-28T05:32:19Z","timestamp":1732771939161,"version":"3.29.0"},"reference-count":20,"publisher":"IEEE","license":[{"start":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T00:00:00Z","timestamp":1728345600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T00:00:00Z","timestamp":1728345600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100002347","name":"German Federal Ministry of Education and Research","doi-asserted-by":"publisher","award":["16ME0096"],"id":[{"id":"10.13039\/501100002347","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024,10,8]]},"DOI":"10.1109\/dft63277.2024.10753546","type":"proceedings-article","created":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T18:56:38Z","timestamp":1732128998000},"page":"1-6","source":"Crossref","is-referenced-by-count":0,"title":["BayWatch: Leveraging Bayesian Neural Networks for Hardware Fault Tolerance and Monitoring"],"prefix":"10.1109","author":[{"given":"Julian","family":"Hoefer","sequence":"first","affiliation":[{"name":"Karlsruhe Institute of Technology (KIT),Karlsruhe,Germany"}]},{"given":"Matthias","family":"Stammler","sequence":"additional","affiliation":[{"name":"Karlsruhe Institute of Technology (KIT),Karlsruhe,Germany"}]},{"given":"Fabian","family":"Kre\u00df","sequence":"additional","affiliation":[{"name":"Karlsruhe Institute of Technology (KIT),Karlsruhe,Germany"}]},{"given":"Tim","family":"Hotfilter","sequence":"additional","affiliation":[{"name":"Karlsruhe Institute of Technology (KIT),Karlsruhe,Germany"}]},{"given":"Tanja","family":"Harbaum","sequence":"additional","affiliation":[{"name":"Karlsruhe Institute of Technology (KIT),Karlsruhe,Germany"}]},{"given":"Juergen","family":"Becker","sequence":"additional","affiliation":[{"name":"Karlsruhe Institute of Technology (KIT),Karlsruhe,Germany"}]}],"member":"263","reference":[{"volume-title":"ISO 26262: Road vehicles - Functional safety","year":"2018","key":"ref1"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.3403\/30392398"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1002\/stvr.1840"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1906.02530"},{"key":"ref5","doi-asserted-by":"crossref","DOI":"10.1145\/3126908.3126964","article-title":"Understanding error propagation in deep learning neural network (dnn) accelerators and applications","volume-title":"International Conference for High Performance Computing, Networking, Storage and Analysis","author":"Li","year":"2017"},{"key":"ref6","article-title":"A simple unified framework for detecting out-of-distribution samples and adversarial attacks","volume":"31","author":"Lee","year":"2018","journal-title":"Advances in neural information processing systems"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC45102.2020.9294226"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01096"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1145\/3583781.3590226"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2023.08.188"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00102"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/MCI.2022.3155327"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.5555\/2986459.2986721"},{"volume-title":"Dropout as a bayesian approximation: Representing model uncertainty in deep learning","year":"2016","author":"Gal","key":"ref14"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.23919\/DATE56975.2023.10137257"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/cvpr.2016.90"},{"volume-title":"Bayesian-torch: Bayesian neural network layers for uncertainty estimation","year":"2022","author":"Krishnan","key":"ref17"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-44137-0_25"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/IISWC59245.2023.00020"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"}],"event":{"name":"2024 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","start":{"date-parts":[[2024,10,8]]},"location":"Didcot, United Kingdom","end":{"date-parts":[[2024,10,10]]}},"container-title":["2024 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10753497\/10753498\/10753546.pdf?arnumber=10753546","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T18:13:11Z","timestamp":1732731191000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10753546\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,8]]},"references-count":20,"URL":"https:\/\/doi.org\/10.1109\/dft63277.2024.10753546","relation":{},"subject":[],"published":{"date-parts":[[2024,10,8]]}}}