{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T14:35:58Z","timestamp":1730212558598,"version":"3.28.0"},"reference-count":28,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T00:00:00Z","timestamp":1590969600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T00:00:00Z","timestamp":1590969600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T00:00:00Z","timestamp":1590969600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,6]]},"DOI":"10.1109\/cvprw50498.2020.00371","type":"proceedings-article","created":{"date-parts":[[2020,7,28]],"date-time":"2020-07-28T22:57:41Z","timestamp":1595977061000},"page":"3123-3131","source":"Crossref","is-referenced-by-count":19,"title":["Adaptive Posit: Parameter aware numerical format for deep learning inference on the edge"],"prefix":"10.1109","author":[{"given":"Hamed F.","family":"Langroudi","sequence":"first","affiliation":[]},{"given":"Vedant","family":"Karia","sequence":"additional","affiliation":[]},{"given":"John L.","family":"Gustafson","sequence":"additional","affiliation":[]},{"given":"Dhireesha","family":"Kudithipudi","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","first-page":"1737","article-title":"Deep learning with limited numerical precision","author":"gupta","year":"2015","journal-title":"Proceedings of the 32nd International Conference on Machine Learning ICML volume 37 of JMLR Workshop and Conference Proceedings"},{"key":"ref11","first-page":"71","article-title":"Beating floating point at its own game: Posit arithmetic","volume":"4","author":"gustafson","year":"2017","journal-title":"Supercomputing Frontiers and Innovations"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2808319"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.23919\/DATE.2017.7927224"},{"article-title":"Mobilenets: Efficient convolutional neural networks for mobile vision applications","year":"2017","author":"howard","key":"ref14"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.1989.118695"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00286"},{"article-title":"Rethinking floating point for deep learning","year":"2018","author":"johnson","key":"ref17"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/SpaceComp.2019.00011"},{"article-title":"Cheetah: Mixed low- precision hardware & software co-design framework for dnns on the edge","year":"2019","author":"langroudi","key":"ref19"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/3285029"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/3316279.3316282"},{"journal-title":"arXiv preprint arXiv 1809 04070","article-title":"Dnn dataflow choice is overrated","year":"2018","author":"yang","key":"ref27"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.23919\/DATE.2019.8715262"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00353"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICCD.2018.00057"},{"journal-title":"3rd International Conference on Learning Representations ICLR Workshop Track Proceedings","article-title":"Low precision arithmetic for deep learning","year":"2015","author":"courbariaux","key":"ref8"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/MM.2018.022071131"},{"journal-title":"International Computer Science Institute","article-title":"Experimental determination of precision requirements for back- propagation training of artificial neural networks","year":"1991","author":"asanovic","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1111\/j.1469-1809.1936.tb02137.x"},{"article-title":"TensorFlow: Large-scale machine learning on heterogeneous systems","year":"2015","author":"abadi","key":"ref1"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/EMC2.2018.00012"},{"article-title":"Apprentice: Using knowledge distillation techniques to improve low-precision network accuracy","year":"2017","author":"mishra","key":"ref22"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/EMC2.2018.00012"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00908"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-38343-3"},{"article-title":"Adaptivfloat: A floatingpoint based data type for resilient deep learning inference","year":"2019","author":"tambe","key":"ref26"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-13-3600-3_31"}],"event":{"name":"2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","start":{"date-parts":[[2020,6,14]]},"location":"Seattle, WA, USA","end":{"date-parts":[[2020,6,19]]}},"container-title":["2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9142289\/9150305\/09151086.pdf?arnumber=9151086","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,27]],"date-time":"2022-06-27T15:59:02Z","timestamp":1656345542000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9151086\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,6]]},"references-count":28,"URL":"https:\/\/doi.org\/10.1109\/cvprw50498.2020.00371","relation":{},"subject":[],"published":{"date-parts":[[2020,6]]}}}