iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/CVPR52688.2022.00560
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:29:39Z","timestamp":1727065779925},"reference-count":49,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"publisher","award":["61772407"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1109\/cvpr52688.2022.00560","type":"proceedings-article","created":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T19:56:41Z","timestamp":1664308601000},"source":"Crossref","is-referenced-by-count":56,"title":["Learning Trajectory-Aware Transformer for Video Super-Resolution"],"prefix":"10.1109","author":[{"given":"Chengxu","family":"Liu","sequence":"first","affiliation":[{"name":"Xi'an Jiaotong University"}]},{"given":"Huan","family":"Yang","sequence":"additional","affiliation":[{"name":"Microsoft Research Asia"}]},{"given":"Jianlong","family":"Fu","sequence":"additional","affiliation":[{"name":"Microsoft Research Asia"}]},{"given":"Xueming","family":"Qian","sequence":"additional","affiliation":[{"name":"Xi'an Jiaotong University"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.304"},{"key":"ref2","article-title":"Video super-resolution transformer","author":"Cao","year":"2021","journal-title":"arXiv preprint"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00491"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.89"},{"key":"ref6","article-title":"HighRes-net: Recursive fusion for multi-frame super-resolution of satellite imagery","author":"Deudon","year":"2020","journal-title":"arXiv preprint"},{"key":"ref7","article-title":"BERT: Pre-training of deep bidirectional transformers for language understanding","author":"Devlin","year":"2018","journal-title":"arXiv preprint"},{"key":"ref8","article-title":"An image is worth 16\u00d716 words: Transformers for image recognition at scale","author":"Dosovitskiy","year":"2020","journal-title":"arXiv preprint"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00431"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2014.762"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00402"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1142\/S0218488598000094"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2701380"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58610-2_38"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00803"},{"key":"ref16","article-title":"Revisiting temporal modeling for video super-resolution","author":"Isobe","year":"2020","journal-title":"arXiv preprint"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00340"},{"key":"ref18","article-title":"3DSRNet: Video super-resolution using 3D convolutional neural networks","author":"Kim","year":"2018","journal-title":"arXiv preprint"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8803297"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01219-9_7"},{"key":"ref21","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"arXiv preprint"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.618"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01077"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58607-2_20"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.127"},{"key":"ref26","article-title":"SGDR: Stochastic gradient descent with warm restarts","author":"Loshchilov","year":"2016","journal-title":"arXiv preprint"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2017.2766204"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00573"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00251"},{"key":"ref30","first-page":"34","article-title":"Keeping your eye on the ball: Trajectory attention in video transformers","volume-title":"NeurIPS","author":"Patrick","year":"2021"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.291"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00693"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.479"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00342"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.510"},{"key":"ref36","first-page":"30","article-title":"Attention is all you need","author":"Vaswani","year":"2017","journal-title":"NeurIPS"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-012-0594-8"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.441"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00247"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2003.819861"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00632"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-018-01144-2"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00583"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00439"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00320"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58517-4_31"},{"key":"ref47","first-page":"34","article-title":"Improving visual quality of image synthesis by a token-based generator with transformers","volume-title":"NeurIPS","author":"Zeng","year":"2021"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2009.09.002"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01234-2_18"}],"event":{"name":"2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","location":"New Orleans, LA, USA","start":{"date-parts":[[2022,6,18]]},"end":{"date-parts":[[2022,6,24]]}},"container-title":["2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9878378\/9878366\/09879583.pdf?arnumber=9879583","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T02:33:35Z","timestamp":1706063615000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9879583\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":49,"URL":"https:\/\/doi.org\/10.1109\/cvpr52688.2022.00560","relation":{},"subject":[],"published":{"date-parts":[[2022,6]]}}}