iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/BIGDATA.2014.7004414
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T02:26:17Z","timestamp":1729650377298,"version":"3.28.0"},"reference-count":44,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2014,10]]},"DOI":"10.1109\/bigdata.2014.7004414","type":"proceedings-article","created":{"date-parts":[[2015,1,13]],"date-time":"2015-01-13T15:04:23Z","timestamp":1421161463000},"page":"61-69","source":"Crossref","is-referenced-by-count":2,"title":["High-frequency financial statistics with parallel R and Intel Xeon Phi coprocessor"],"prefix":"10.1109","author":[{"given":"Jian","family":"Zou","sequence":"first","affiliation":[]},{"given":"Hui","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"19","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.0808709105"},{"journal-title":"Bayesian Large-scale Multiple Testing for Time Series Data","year":"2014","author":"wang","key":"35"},{"key":"17","doi-asserted-by":"publisher","DOI":"10.3150\/bj\/1116340299"},{"key":"36","doi-asserted-by":"publisher","DOI":"10.1214\/09-AOS730"},{"key":"18","doi-asserted-by":"publisher","DOI":"10.1111\/1540-6261.00580"},{"key":"33","first-page":"267","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"tibshirani","year":"1996","journal-title":"J Roy Statist Soc Ser B"},{"key":"15","doi-asserted-by":"publisher","DOI":"10.1093\/biomet\/asq060"},{"key":"34","doi-asserted-by":"publisher","DOI":"10.1186\/1471-2105-9-390"},{"journal-title":"Clearspeed Whitepaper Accelerating the Intel Math Kernel Library","year":"2007","author":"gustafson","key":"16"},{"key":"39","doi-asserted-by":"publisher","DOI":"10.1093\/biomet\/asm018"},{"key":"13","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.2012.682825"},{"key":"14","doi-asserted-by":"publisher","DOI":"10.1016\/S0304-405X(02)00259-3"},{"journal-title":"Speeding Up R with Intel's Math Kernel Library (MKL","year":"2012","author":"wilson","key":"37"},{"key":"11","first-page":"101","article-title":"A selective overview of variable selection in high dimensional feature space","volume":"20","author":"fan","year":"2010","journal-title":"Statist Sinica"},{"key":"38","first-page":"10","article-title":"Rmpi: Parallel statistical computing in r","volume":"2","author":"yu","year":"2002","journal-title":"R News"},{"key":"12","doi-asserted-by":"publisher","DOI":"10.1198\/016214507000001067"},{"key":"21","first-page":"4","article-title":"Rpvm: Cluster statistical computing in r","author":"li","year":"2001","journal-title":"Porting R to Darwin\/X11 and Mac OS X"},{"key":"20","doi-asserted-by":"publisher","DOI":"10.1214\/07-AOAS139"},{"key":"43","doi-asserted-by":"crossref","first-page":"477","DOI":"10.4310\/SII.2013.v6.n4.a6","article-title":"Statistical methods for large portfolio risk management","volume":"6","author":"zou","year":"2013","journal-title":"Statistics and Its Interface"},{"key":"42","doi-asserted-by":"publisher","DOI":"10.1198\/016214506000000735"},{"key":"41","doi-asserted-by":"crossref","first-page":"1394","DOI":"10.1198\/016214505000000169","article-title":"A tale of two time scales: Determining integrated volatility with noisy highfrequency data","volume":"100","author":"zhang","year":"2005","journal-title":"J Amer Statist Assoc"},{"key":"40","doi-asserted-by":"publisher","DOI":"10.3150\/bj\/1165269149"},{"journal-title":"Large Portfolio Allocation Using Highfrequency Financial Data","year":"2014","author":"zou","key":"44"},{"key":"22","doi-asserted-by":"publisher","DOI":"10.1002\/jae.1062"},{"key":"23","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2007.07.014"},{"key":"24","doi-asserted-by":"publisher","DOI":"10.2307\/2975974"},{"key":"25","doi-asserted-by":"publisher","DOI":"10.1111\/j.1541-0420.2007.00895.x"},{"key":"26","doi-asserted-by":"publisher","DOI":"10.1198\/0162145000001655"},{"journal-title":"Simple Parallel Statistical Computing in R","year":"2003","author":"rossini","key":"27"},{"key":"28","doi-asserted-by":"publisher","DOI":"10.3905\/jpm.1994.409501"},{"key":"29","doi-asserted-by":"publisher","DOI":"10.1198\/016214502388618933"},{"key":"3","doi-asserted-by":"publisher","DOI":"10.2139\/ssrn.620203"},{"key":"2","doi-asserted-by":"publisher","DOI":"10.1109\/SC.Companion.2012.142"},{"key":"10","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.2012.656041"},{"key":"1","doi-asserted-by":"publisher","DOI":"10.1198\/016214501750332965"},{"key":"30","doi-asserted-by":"publisher","DOI":"10.1109\/SC.Companion.2012.139"},{"key":"7","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/978-3-642-56205-1_3","article-title":"Beamlets and multiscale image analysis","author":"donoho","year":"2002","journal-title":"Multiscale and Multiresolution Methods Volume 20 of Lect Notes Comput Sci Eng"},{"key":"6","doi-asserted-by":"publisher","DOI":"10.1109\/SC.Companion.2012.138"},{"key":"32","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-9868.2008.00694.x"},{"key":"5","doi-asserted-by":"publisher","DOI":"10.1198\/016214507000000941"},{"key":"31","doi-asserted-by":"publisher","DOI":"10.1002\/(SICI)1097-0258(19991230)18:24<3463::AID-SIM409>3.0.CO;2-I"},{"key":"4","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1111\/1467-9868.00336","article-title":"Econometric analysis of realized volatility and its use in estimating stochastic volatility models","volume":"64","author":"barndorff-nielsen","year":"2002","journal-title":"J R Stat Soc Ser B Stat Methodol"},{"key":"9","doi-asserted-by":"publisher","DOI":"10.1198\/016214501753382273"},{"key":"8","doi-asserted-by":"publisher","DOI":"10.1017\/S0266466600009063"}],"event":{"name":"2014 IEEE International Conference on Big Data (Big Data)","start":{"date-parts":[[2014,10,27]]},"location":"Washington, DC, USA","end":{"date-parts":[[2014,10,30]]}},"container-title":["2014 IEEE International Conference on Big Data (Big Data)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6973861\/7004197\/07004414.pdf?arnumber=7004414","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,6,22]],"date-time":"2017-06-22T23:34:09Z","timestamp":1498174449000},"score":1,"resource":{"primary":{"URL":"http:\/\/ieeexplore.ieee.org\/document\/7004414\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,10]]},"references-count":44,"URL":"http:\/\/dx.doi.org\/10.1109\/bigdata.2014.7004414","relation":{},"subject":[],"published":{"date-parts":[[2014,10]]}}}