iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/BIBM52615.2021.9669727
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T11:05:33Z","timestamp":1730199933960,"version":"3.28.0"},"reference-count":27,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,12,9]],"date-time":"2021-12-09T00:00:00Z","timestamp":1639008000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,12,9]],"date-time":"2021-12-09T00:00:00Z","timestamp":1639008000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,9]],"date-time":"2021-12-09T00:00:00Z","timestamp":1639008000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12,9]]},"DOI":"10.1109\/bibm52615.2021.9669727","type":"proceedings-article","created":{"date-parts":[[2022,1,14]],"date-time":"2022-01-14T20:40:30Z","timestamp":1642192830000},"page":"1513-1518","source":"Crossref","is-referenced-by-count":6,"title":["PoissonSeg: Semi-Supervised Few-Shot Medical Image Segmentation via Poisson Learning"],"prefix":"10.1109","author":[{"given":"Xiaoang","family":"Shen","sequence":"first","affiliation":[]},{"given":"Guokai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Huilin","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Jihao","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Jianwei","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Ye","family":"Luo","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00071"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00929"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58598-3_45"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/WACV48630.2021.00057"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3058512"},{"key":"ref15","doi-asserted-by":"crossref","first-page":"101587","DOI":"10.1016\/j.media.2019.101587","article-title":"‘Squeeze & excite’guided few-shot segmentation of volumetric images","volume":"59","author":"roy","year":"2020","journal-title":"Medical Image Analysis"},{"journal-title":"2012 arXiv preprint arXiv","article-title":"Few-shot Medical Image Segmentation using a Global Correlation Network with Discriminative Embedding","year":"2020","author":"sun","key":"ref16"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58526-6_45"},{"journal-title":"arXiv preprint arXiv 2003 07516","article-title":"Semi-supervised few-shot learning for medical image segmentation","year":"2020","author":"feyjie","key":"ref18"},{"key":"ref19","first-page":"552","article-title":"Shape-aware semi-supervised 3d semantic segmentation for medical images","author":"li","year":"2020","journal-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.106647"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00823"},{"key":"ref3","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"finn","year":"2017","journal-title":"International Conference on Machine Learning"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI48211.2021.9434008"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58598-3_45"},{"journal-title":"arXiv preprint arXiv 1703 10717","article-title":"Prototypical networks for few-shot learning","year":"2017","author":"snell","key":"ref8"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00120"},{"journal-title":"Optimization as a model for few-shot learning","year":"2016","author":"ravi","key":"ref2"},{"journal-title":"arXiv preprint arXiv 1709 03395","article-title":"One-shot learning for semantic segmentation","year":"2017","author":"shaban","key":"ref9"},{"key":"ref1","first-page":"1306","article-title":"Poisson Learning: Graph Based semi-supervised learning at very low label rates","author":"calder","year":"2020","journal-title":"International Conference on Machine Learning"},{"journal-title":"arXiv preprint arXiv 2009 02026","article-title":"Semi-supervised medical image segmentation through dual-task consistency","year":"2020","author":"luo","key":"ref20"},{"key":"ref22","first-page":"3159","article-title":"Scribblesup: Scribble-supervised convolutional networks for semantic segmentation","author":"lin","year":"2016","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298888"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2018.8363547"},{"journal-title":"arXiv preprint arXiv 1409 1556","article-title":"Very deep convolutional networks for large-scale image recognition","year":"2014","author":"simonyan","key":"ref23"},{"journal-title":"Proc MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge","article-title":"MICCAI multi-atlas labeling beyond the cranial vault – workshop and challenge","year":"2015","author":"landman","key":"ref26"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101950"}],"event":{"name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","start":{"date-parts":[[2021,12,9]]},"location":"Houston, TX, USA","end":{"date-parts":[[2021,12,12]]}},"container-title":["2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9669261\/9669139\/09669727.pdf?arnumber=9669727","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:57:13Z","timestamp":1652201833000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9669727\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,9]]},"references-count":27,"URL":"https:\/\/doi.org\/10.1109\/bibm52615.2021.9669727","relation":{},"subject":[],"published":{"date-parts":[[2021,12,9]]}}}