iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/ACCESS.2022.3198597
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,2,2]],"date-time":"2024-02-02T00:24:34Z","timestamp":1706833474541},"reference-count":57,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"am","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["1956339"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2022]]},"DOI":"10.1109\/access.2022.3198597","type":"journal-article","created":{"date-parts":[[2022,8,11]],"date-time":"2022-08-11T19:31:05Z","timestamp":1660246265000},"page":"88164-88177","source":"Crossref","is-referenced-by-count":2,"title":["Spectrum Pursuit With Residual Descent for Column Subset Selection Problem: Theoretical Guarantees and Applications in Deep Learning"],"prefix":"10.1109","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1258-0343","authenticated-orcid":false,"given":"Saeed","family":"Vahidian","sequence":"first","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of California at San Diego, San Diego, CA, USA"}]},{"given":"Mohsen","family":"Joneidi","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA"}]},{"given":"Ashkan","family":"Esmaeili","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA"}]},{"given":"Siavash","family":"Khodadadeh","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA"}]},{"given":"Sharareh","family":"Zehtabian","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0965-7247","authenticated-orcid":false,"given":"Bill","family":"Lin","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of California at San Diego, San Diego, CA, USA"}]}],"member":"263","reference":[{"key":"ref1","first-page":"806","article-title":"Algorithms for lp low-rank approximation","volume-title":"Proc. 34th Int. Conf. Mach. Learn. (PMLR)","volume":"70","author":"Chierichetti"},{"key":"ref2","first-page":"2537","article-title":"Optimal analysis of subset-selection based l_p low-rank approximation","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Dan"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00556"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/5.843002"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00784"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611973068.105"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.laa.2020.09.015"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcss.2014.01.004"},{"key":"ref9","first-page":"6120","article-title":"Towards a zero-one law for column subset selection","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Song"},{"key":"ref10","first-page":"10111","article-title":"Average case column subset selection for entrywise l-norm loss","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Song"},{"key":"ref11","article-title":"A note on replacing uniform subsampling by random projections in MCMC for linear regression of tall datasets","author":"Bardenet","year":"2015"},{"key":"ref12","first-page":"2729","article-title":"Variational inference via X upper bound minimization","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Dieng"},{"key":"ref13","first-page":"698","article-title":"Bayesian coreset construction via greedy iterative geodesic ascent","volume-title":"Proc. 35th Int. Conf. Mach. Learn.","author":"Campbell"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611973075.50"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.tcs.2010.12.054"},{"key":"ref16","first-page":"235","article-title":"Coarse sample complexity bounds for active learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Dasgupta"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3136625"},{"key":"ref18","first-page":"4080","article-title":"Coresets for scalable Bayesian logistic regression","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Huggins"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1145\/2488608.2488620"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1137\/13092157x"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1137\/130938700"},{"key":"ref22","article-title":"True BLAS-3 performance QRCP using random samplin","author":"Duersch","year":"2015","journal-title":"arXiv:1509.06820"},{"key":"ref23","first-page":"406","article-title":"Column selection via adaptive sampling","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Paul"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1155\/2015\/846942"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.107253"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.114765"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.4086\/toc.2006.v002a012"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/11830924_28"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1137\/0917055"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TBDATA.2018.2868120"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1137\/07070471X"},{"key":"ref32","first-page":"1","article-title":"Global optimality of local search for low rank matrix recovery","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"43","author":"Srinadh Bhojanapalli"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/FOCS.2010.38"},{"key":"ref34","article-title":"Polynomial time algorithm for column-row based relative-error low-rank matrix approximation","author":"Drineas","year":"2006"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1137\/12086755X"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/0024-3795(87)90136-4"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2009.08.002"},{"key":"ref38","first-page":"1","article-title":"One shot learning of simple visual concepts","volume-title":"Proc. Annu. Meeting Cognit. Sci. Soc.","volume":"33","author":"Lake"},{"key":"ref39","volume-title":"MNIST Handwritten Digit Database","author":"LeCun","year":"2010"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1609\/aimag.v29i3.2157"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.57"},{"key":"ref42","first-page":"67","article-title":"Scalable exemplar-based subspace clustering on class-imbalanced data","volume-title":"Proc. Eur. Conf. Comput. Vis. (ECCV)","author":"You"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2012.6247852"},{"key":"ref44","first-page":"1","article-title":"Selective sampling-based scalable sparse subspace clustering","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Matsushima"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2003.12.013"},{"key":"ref46","first-page":"5038","article-title":"Polynomial time algorithms for dual volume sampling","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Li"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.173"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01228-1_10"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00414"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00098"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_38"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-44851-9_15"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2511748"},{"key":"ref54","article-title":"Practical coreset constructions for machine learning","author":"Bachem","year":"2017"},{"key":"ref55","first-page":"2115","article-title":"Hierarchical matching pursuit for image classification: Architecture and fast algorithms","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Bo"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2009.2030471"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1017\/cbo9780511794308.002"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"https:\/\/ieeexplore.ieee.org\/ielam\/6287639\/9668973\/9855488-aam.pdf","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/9668973\/09855488.pdf?arnumber=9855488","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T11:55:06Z","timestamp":1706788506000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9855488\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"references-count":57,"URL":"http:\/\/dx.doi.org\/10.1109\/access.2022.3198597","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022]]}}}