iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/ACCESS.2021.3133657
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,6,3]],"date-time":"2023-06-03T11:28:23Z","timestamp":1685791703461},"reference-count":48,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2021]]},"DOI":"10.1109\/access.2021.3133657","type":"journal-article","created":{"date-parts":[[2021,12,7]],"date-time":"2021-12-07T20:36:03Z","timestamp":1638909363000},"page":"165786-165794","source":"Crossref","is-referenced-by-count":2,"title":["Intent Focused Semantic Parsing and Zero-Shot Learning for Out-of-Domain Detection in Spoken Language Understanding"],"prefix":"10.1109","volume":"9","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5498-1997","authenticated-orcid":false,"given":"Niraj","family":"Kumar","sequence":"first","affiliation":[{"name":"Samsung Research Institute, Bengaluru, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6439-5844","authenticated-orcid":false,"given":"Bhiman Kumar","family":"Baghel","sequence":"additional","affiliation":[{"name":"Samsung Research Institute, Bengaluru, India"}]}],"member":"263","reference":[{"key":"ref39","first-page":"4393","article-title":"Deep one-class classification","author":"ruff","year":"2018","journal-title":"Proc 35th ICML"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1162\/089976601750264965"},{"key":"ref33","author":"cattin","year":"2012","journal-title":"Image Restoration Introduction to Signal and Image Processing"},{"key":"ref32","author":"truax","year":"2017","journal-title":"Handbook for Acoustic Ecology"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1155\/2013\/856876"},{"key":"ref30","first-page":"9","article-title":"Language models are unsupervised multitask learners","volume":"1","author":"radford","year":"2019","journal-title":"OpenAIRE blog"},{"key":"ref37","year":"2020","journal-title":"Improved Deep Learning Pornographic Image Identification Method"},{"key":"ref36","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2014","journal-title":"arXiv 1409 1556"},{"key":"ref35","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref34","author":"peebles","year":"2001","journal-title":"Probability Random Variables and Random Signal Principles"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.21437\/Interspeech.2018-1581"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1077"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-1131"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.acl-main.58"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TASLP.2020.2983593"},{"key":"ref14","article-title":"A simple unified framework for detecting out-ofdistribution samples and adversarial attacks","author":"kimin","year":"2018","journal-title":"arXiv 1807 03888"},{"key":"ref15","article-title":"Likelihood ratios for out-of-distribution detection","author":"ren","year":"2019","journal-title":"arXiv 1906 02845"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_5"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1548"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.coling-main.125"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2018.2889273"},{"key":"ref28","article-title":"BERT: Pre-training of deep bidirectional transformers for language understanding","author":"devlin","year":"2018","journal-title":"arXiv 1810 04805"},{"key":"ref4","article-title":"BERT for joint intent classification and slot filling","author":"chen","year":"2019","journal-title":"arXiv 1902 10909"},{"key":"ref27","article-title":"Enhancing the reliability of out-of-distribution image detection in neural networks","author":"liang","year":"2017","journal-title":"arXiv 1706 02690"},{"key":"ref3","article-title":"Google’s neural machine translation system: Bridging the gap between human and machine translation","author":"wu","year":"2016","journal-title":"arXiv 1609 08144"},{"key":"ref6","first-page":"1","article-title":"Neural machine translation by jointly learning to align and translate","author":"dzmitry","year":"2015","journal-title":"Proc ICLR"},{"key":"ref29","first-page":"657","volume":"656","author":"sch\u00f6lkopf","year":"2002","journal-title":"Support Vector Machines Regularization Optimization and Beyond"},{"key":"ref5","first-page":"1","article-title":"XLNet: Generalized autoregressive pretraining for language understanding","author":"yang","year":"2019","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.256"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICICTA.2018.00015"},{"key":"ref2","first-page":"5998","article-title":"Attention is all you need","author":"vaswani","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N16-1061"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P14-5010"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1023\/B:MACH.0000008084.60811.49"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-1364"},{"key":"ref45","article-title":"Anomaly detection using one-class neural networks","author":"chalapathy","year":"2018","journal-title":"arXiv 1802 06360"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1145\/342009.335388"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1314"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00552"},{"key":"ref21","article-title":"A baseline for detecting misclassified and out-of-distribution examples in neural networks","author":"hendrycks","year":"2016","journal-title":"arXiv 1610 02136"},{"key":"ref42","author":"brownlee","year":"2016","journal-title":"How to grid search hyperparameters for deep learning models in python with keras"},{"key":"ref24","first-page":"7764","article-title":"Likelihood ratios and generative classifiers for unsupervised out-of-domain detection in task oriented dialog","author":"varun","year":"2020","journal-title":"Proc AAAI"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"ref23","article-title":"Likelihood ratios for Out-of-Distribution detection","author":"ren","year":"2019","journal-title":"arXiv 1906 02845"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2021.3095416"},{"key":"ref26","article-title":"Principled detection of out-of-distribution examples in neural networks","author":"shiyu","year":"2017","journal-title":"arXiv 1706 02690"},{"key":"ref43","first-page":"190","article-title":"Learning with ensembles: How overfitting can be useful","author":"sollich","year":"1996","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref25","doi-asserted-by":"crossref","first-page":"13675","DOI":"10.1609\/aaai.v35i15.17612","article-title":"Revisiting Mahalanobis distance for transformer-based out-of-domain detection","author":"podolskiy","year":"2021","journal-title":"Proc AAAI"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/9312710\/09641813.pdf?arnumber=9641813","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,17]],"date-time":"2023-01-17T15:36:43Z","timestamp":1673969803000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9641813\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":48,"URL":"http:\/\/dx.doi.org\/10.1109\/access.2021.3133657","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021]]}}}