iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/ACCESS.2021.3101619
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,20]],"date-time":"2024-07-20T11:28:35Z","timestamp":1721474915931},"reference-count":28,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51705226"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2021]]},"DOI":"10.1109\/access.2021.3101619","type":"journal-article","created":{"date-parts":[[2021,7,30]],"date-time":"2021-07-30T20:23:55Z","timestamp":1627676635000},"page":"108992-109003","source":"Crossref","is-referenced-by-count":9,"title":["Evaluation and Design Method for Product Form Aesthetics Based on Deep Learning"],"prefix":"10.1109","volume":"9","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3994-9040","authenticated-orcid":false,"given":"Aimin","family":"Zhou","sequence":"first","affiliation":[{"name":"School of Design Art, Lanzhou University of Technology, Lanzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4292-0847","authenticated-orcid":false,"given":"Hongbin","family":"Liu","sequence":"additional","affiliation":[{"name":"School of Design Art, Lanzhou University of Technology, Lanzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4665-5443","authenticated-orcid":false,"given":"Shutao","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Design Art, Lanzhou University of Technology, Lanzhou, China"}]},{"given":"Jinyan","family":"Ouyang","sequence":"additional","affiliation":[{"name":"School of Design Art, Lanzhou University of Technology, Lanzhou, China"}]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.image.2016.05.009"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.23919\/SPA.2017.8166855"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2018.05.016"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2943460"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3044573"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2020.103024"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.23919\/ICACT48636.2020.9061216"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3039715"},{"key":"ref28","first-page":"1","article-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","author":"radford","year":"2016","journal-title":"Proc 4th Int Conf Learn Represent (ICLR)"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1080\/16864360.2015.1114385"},{"key":"ref27","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"zeiler","year":"2014","journal-title":"Proc 13th Eur Conf Comput Vis"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-67687-6_7"},{"key":"ref6","first-page":"547","article-title":"Formulation and use of criteria for the evaluation of aesthetic attributes of products in engineering design","author":"roussos","year":"2013","journal-title":"Proc 19th Int Conf Eng Design Hum Behav Design (ICED)"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1115\/1.3116260"},{"key":"ref8","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc 26th Annu Conf Neural Inf Process Syst (NIPS)"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1504\/IJART.2020.108635"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1155\/2015\/153103"},{"key":"ref9","first-page":"1","article-title":"Very deep convolutional networks for large-scale image recognition","volume":"140","author":"simonyan","year":"2014","journal-title":"Comput Sci"},{"key":"ref1","first-page":"139","article-title":"Generative adversarial networks","volume":"63","author":"goodfellow","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2020.02.257"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3230519.3230598"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1145\/3184066.3184071"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/FITI49428.2019.9037632"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-99740-7_11"},{"key":"ref26","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","volume":"1","author":"ioffe","year":"2015","journal-title":"Int Mach Learn Soc (IMLS)"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/S0031-3203(01)00178-9"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/9312710\/09502701.pdf?arnumber=9502701","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,8]],"date-time":"2022-09-08T20:34:28Z","timestamp":1662669268000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9502701\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":28,"URL":"http:\/\/dx.doi.org\/10.1109\/access.2021.3101619","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021]]}}}