iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/ACCESS.2020.2991263
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:36:40Z","timestamp":1726850200403},"reference-count":43,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100005311","name":"China Southern Power Grid Research Project","doi-asserted-by":"publisher","award":["ZDKJXM20180084"],"id":[{"id":"10.13039\/501100005311","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.2991263","type":"journal-article","created":{"date-parts":[[2020,4,29]],"date-time":"2020-04-29T20:54:28Z","timestamp":1588193668000},"page":"93283-93296","source":"Crossref","is-referenced-by-count":65,"title":["Recurrent Graph Convolutional Network-Based Multi-Task Transient Stability Assessment Framework in Power System"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7410-5567","authenticated-orcid":false,"given":"Jiyu","family":"Huang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2625-707X","authenticated-orcid":false,"given":"Lin","family":"Guan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1081-8311","authenticated-orcid":false,"given":"Yinsheng","family":"Su","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9207-4570","authenticated-orcid":false,"given":"Haicheng","family":"Yao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1755-7596","authenticated-orcid":false,"given":"Mengxuan","family":"Guo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0777-3500","authenticated-orcid":false,"given":"Zhi","family":"Zhong","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P15-2139"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1016\/B978-1-55860-307-3.50012-5"},{"key":"ref33","first-page":"1263","article-title":"Neural message passing for quantum chemistry","volume":"70","author":"gilmer","year":"2017","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref32","first-page":"1","article-title":"Semi-supervised classification with graph convolutional networks","author":"kipf","year":"2017","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2019.2899395"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/PESGM40551.2019.8973468"},{"key":"ref37","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.21437\/Interspeech.2017-556"},{"key":"ref35","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TIA.2017.2753176"},{"key":"ref40","first-page":"1","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2015","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijepes.2015.11.034"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2872796"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2017.2707501"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.09.059"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijepes.2018.11.031"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.3390\/en12173217"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2018.2872505"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2019.2957377"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2020.114586"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219890"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2016.2601024"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33017370"},{"key":"ref3","volume":"7","author":"kundur","year":"1994","journal-title":"Power System Stability and Control"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TPAS.1979.319407"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2019.2951964"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1134\/S096554251506010X"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2013.2266617"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2014.2350476"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijepes.2019.105510"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2010.2082575"},{"key":"ref1","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1109\/TPWRS.2004.825981","article-title":"Definition and classification of power system stability IEEE\/CIGRE joint task force on stability terms and definitions","volume":"19","author":"kundur","year":"2004","journal-title":"IEEE Trans Power Syst"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2019.2895592"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/EEEIC.2019.8783880"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2018.2812298"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1080\/15325008.2017.1310953"},{"key":"ref42","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der maaten","year":"2008","journal-title":"J Mach Learn Res"},{"key":"ref41","first-page":"8024","article-title":"PyTorch: An imperative style, high-performance deep learning library","author":"paszke","year":"2019","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TCNS.2017.2698266"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/574"},{"key":"ref25","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/29.57577"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09081965.pdf?arnumber=9081965","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:51:45Z","timestamp":1639770705000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9081965\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":43,"URL":"http:\/\/dx.doi.org\/10.1109\/access.2020.2991263","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}