iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1109/ACCESS.2019.2900053
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T14:05:18Z","timestamp":1725113118085},"reference-count":25,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/OAPA.html"}],"funder":[{"name":"Ministry of Science and Technology of China"},{"name":"National Key Research and Development Project","award":["2016YFC1300400"]},{"name":"CAMS Innovation Fund","award":["2016-I2M-1-011"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1109\/access.2019.2900053","type":"journal-article","created":{"date-parts":[[2019,3,28]],"date-time":"2019-03-28T18:52:25Z","timestamp":1553799145000},"page":"37749-37756","source":"Crossref","is-referenced-by-count":45,"title":["Automatic Cardiothoracic Ratio Calculation With Deep Learning"],"prefix":"10.1109","volume":"7","author":[{"given":"Zhennan","family":"Li","sequence":"first","affiliation":[]},{"given":"Zhihui","family":"Hou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3525-9755","authenticated-orcid":false,"given":"Chen","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zhi","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Yunqiang","family":"An","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5511-2614","authenticated-orcid":false,"given":"Sen","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Lu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2548501"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2538465"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2535865"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1097\/RLI.0000000000000341"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/s10278-016-9914-9"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2006.01.015"},{"key":"ref16","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","author":"ronneberger","year":"2015","journal-title":"Medical Image Computing and Computer-Assisted Intervention—MICCAI"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.619"},{"key":"ref18","author":"ioffe","year":"2015","journal-title":"Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift"},{"key":"ref19","first-page":"1097","article-title":"Image Net classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref4","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijcard.2011.10.125"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3348\/kjr.2017.18.4.570"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1148\/rg.2017170077"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2017.06.014"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2016.07.007"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1056\/NEJM198501243120404"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/S0735-1097(02)02490-7"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2017.11.005"},{"key":"ref20","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","volume":"9","author":"glorot","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref22","author":"chen","year":"2015","journal-title":"Mxnet A flexible and efficient machine learning library for heterogeneous distributed systems"},{"key":"ref21","first-page":"533","article-title":"Learning representations by back-propagating errors","author":"rumelhart","year":"1988","journal-title":"Neurocomputing Foundations of Research"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.580"},{"key":"ref23","first-page":"109","article-title":"Efficient inference in fully connected CRFs with Gaussian edge potentials","author":"kr\u00e4henb\u00fchl","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/EMBC.2018.8512374"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8600701\/08675927.pdf?arnumber=8675927","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,10]],"date-time":"2021-08-10T19:40:44Z","timestamp":1628624444000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8675927\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":25,"URL":"http:\/\/dx.doi.org\/10.1109\/access.2019.2900053","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019]]}}}