iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1093/BIB/BBU042
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T09:50:44Z","timestamp":1718272244531},"reference-count":101,"publisher":"Oxford University Press (OUP)","issue":"5","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Brief Bioinform"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1093\/bib\/bbu042","type":"journal-article","created":{"date-parts":[[2014,11,30]],"date-time":"2014-11-30T01:34:04Z","timestamp":1417311244000},"page":"884-900","source":"Crossref","is-referenced-by-count":26,"title":["Discriminative pattern mining and its applications in bioinformatics"],"prefix":"10.1093","volume":"16","author":[{"given":"Xiaoqing","family":"Liu","sequence":"first","affiliation":[]},{"given":"Jun","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Feiyang","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zengyou","family":"He","sequence":"additional","affiliation":[]}],"member":"286","published-online":{"date-parts":[[2014,11,28]]},"reference":[{"key":"2015091506373358000_16.5.884.1","unstructured":"Agrawal R Srikant R . Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago: Morgan Kaufmann, 1994, 487\u201399."},{"key":"2015091506373358000_16.5.884.2","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbt074"},{"key":"2015091506373358000_16.5.884.3","doi-asserted-by":"crossref","unstructured":"Han J Pei J Yin Y . Mining frequent patterns without candidate generation. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000. New York: ACM, 2000, 1\u201312.","DOI":"10.1145\/342009.335372"},{"key":"2015091506373358000_16.5.884.4","doi-asserted-by":"crossref","unstructured":"Inokuchi A Washio T Motoda H . An Apriori-based algorithm for mining frequent substructures from graph data. In Principles of Data Mining and Knowledge Discovery. Heidelberg: Springer Berlin, 2000, 13\u201323.","DOI":"10.1007\/3-540-45372-5_2"},{"key":"2015091506373358000_16.5.884.5","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1074"},{"key":"2015091506373358000_16.5.884.6","doi-asserted-by":"crossref","unstructured":"Cheng H Yan X Han J . Discriminative frequent pattern analysis for effective classification. In 2007 IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, 2007. Washington, DC: IEEE Computer Society, 716\u201325.","DOI":"10.1109\/ICDE.2007.367917"},{"key":"2015091506373358000_16.5.884.7","doi-asserted-by":"crossref","unstructured":"Ramamohanarao K Bailey J . Discovery of emerging patterns and their use in classification. In AI 2003: Advances in Artificial Intelligence. Heidelberg: Springer Berlin, 2003, 1\u201311.","DOI":"10.1007\/978-3-540-24581-0_1"},{"key":"2015091506373358000_16.5.884.8","doi-asserted-by":"crossref","unstructured":"Bay SD Pazzani MJ . Detecting change in categorical data: mining contrast sets. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 1999. New York: ACM, 302\u20136.","DOI":"10.1145\/312129.312263"},{"key":"2015091506373358000_16.5.884.9","doi-asserted-by":"publisher","DOI":"10.1023\/A:1011429418057"},{"key":"2015091506373358000_16.5.884.10","doi-asserted-by":"crossref","unstructured":"Dong G Li J . Efficient mining of emerging patterns: discovering trends and differences. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 1999. New York: ACM, 43\u201352.","DOI":"10.1145\/312129.312191"},{"key":"2015091506373358000_16.5.884.11","unstructured":"Kl\u00f6sgen W . Explora: a multipattern and multistrategy discovery assistant. In Advances in Knowledge Discovery and Data Mining. Menlo Park: American Association for Artificial Intelligence, 1996, 249\u201371."},{"key":"2015091506373358000_16.5.884.12","doi-asserted-by":"crossref","unstructured":"Wrobel S . An algorithm for multi-relational discovery of subgroups. In Principles of Data Mining and Knowledge Discovery. Heidelberg: Springer Berlin, 1997, 78\u201387.","DOI":"10.1007\/3-540-63223-9_108"},{"key":"2015091506373358000_16.5.884.13","doi-asserted-by":"crossref","unstructured":"Webb GI Butler S Newlands D . On detecting differences between groups. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 2003. New York: ACM, 256\u201365.","DOI":"10.1145\/956750.956781"},{"key":"2015091506373358000_16.5.884.14","unstructured":"Li J Ramamohanarao K Dong G . The space of jumping emerging patterns and its incremental maintenance algorithms. In Proceedings of the 17th International Conference on Machine Learning, Standford, CA, USA, 2000. San Francisco: Morgan Kaufmann Publishers Inc., 551\u20138."},{"key":"2015091506373358000_16.5.884.15","unstructured":"Novak PK Lavra\u010d N Webb GI . Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. J Mach Learn Res 2009;10:377\u2013403."},{"key":"2015091506373358000_16.5.884.16","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btg361"},{"key":"2015091506373358000_16.5.884.17","doi-asserted-by":"crossref","unstructured":"Gao C Wang J . Direct mining of discriminative patterns for classifying uncertain data. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 2010. New York: ACM, 861\u201370.","DOI":"10.1145\/1835804.1835913"},{"key":"2015091506373358000_16.5.884.18","doi-asserted-by":"crossref","unstructured":"Kralj P Lavra\u010d N Gamberger D . Contrast set mining for distinguishing between similar diseases. In Artificial Intelligence in Medicine. Heidelberg: Springer Berlin, 2007, 109\u201318.","DOI":"10.1007\/978-3-540-73599-1_12"},{"key":"2015091506373358000_16.5.884.19","doi-asserted-by":"crossref","unstructured":"Fan W Zhang K Cheng H . Direct mining of discriminative and essential frequent patterns via model-based search tree. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, 2008. New York: ACM, 230\u20138.","DOI":"10.1145\/1401890.1401922"},{"key":"2015091506373358000_16.5.884.20","unstructured":"Meeng M Knobbe A . Flexible enrichment with Cortana\u2013software demo. In Proceedings of 20th Machine Learning Conference of Belgium and The Netherlands, The Hague, Netherlands, 2011, 117--19. http:\/\/www.liacs.nl\/\/~putten\/benelearn2011\/Benelearn2011_Proceedings.pdf ."},{"key":"2015091506373358000_16.5.884.21","unstructured":"Knobbe A Cr\u00e9milleux B F\u00fcrnkranz J . From local patterns to global models: the lego approach to data mining. In: Proceedings of International Workshop from Local Patterns to Global Models (ECML\u201908), Antwerp, Belgium, 2008, 1\u201316."},{"key":"2015091506373358000_16.5.884.22","unstructured":"Bringmann B Nijssen S Tatti N . Mining sets of patterns. In Tutorial at ECMLPKDD, Barcelona, Spain, 2010. http:\/\/www.cs.kuleuven.be\/conference\/msop\/ ."},{"key":"2015091506373358000_16.5.884.23","doi-asserted-by":"crossref","unstructured":"De Raedt L Zimmermann A . Constraint-based pattern set mining. In Proceedings of the 7th SIAM International Conference on Data Mining, Minnesota, USA, 2007. Philadelphia: SIAM, 237\u201348.","DOI":"10.1137\/1.9781611972771.22"},{"key":"2015091506373358000_16.5.884.24","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-012-0273-y"},{"key":"2015091506373358000_16.5.884.25","doi-asserted-by":"crossref","unstructured":"Guns T Nijssen S De Raedt L . Evaluating pattern set mining strategies in a constraint programming framework. In Advances in Knowledge Discovery and Data Mining, Heidelberg: Springer Berlin, 2011, 382\u201394.","DOI":"10.1007\/978-3-642-20847-8_32"},{"key":"2015091506373358000_16.5.884.26","unstructured":"Pang-Ning T Steinbach M Kumar V . Introduction to Data Mining. Boston: Addison-Wesley, 2006."},{"key":"2015091506373358000_16.5.884.27","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-007-5006-x"},{"key":"2015091506373358000_16.5.884.28","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2010.241"},{"key":"2015091506373358000_16.5.884.29","doi-asserted-by":"crossref","unstructured":"Kav\u0161ek B Lavra\u010d N Jovanoski V . Apriori-SD: adapting association rule learning to subgroup discovery. In Advances in Intelligent Data Analysis V. Springer, 2003, 230\u201341.","DOI":"10.1007\/978-3-540-45231-7_22"},{"key":"2015091506373358000_16.5.884.30","doi-asserted-by":"crossref","unstructured":"Atzm\u00fcller M Puppe F . SD-Map\u2013A fast algorithm for exhaustive subgroup discovery. In Knowledge Discovery in Databases: PKDD 2006. Springer, 2006, 6\u201317.","DOI":"10.1007\/11871637_6"},{"key":"2015091506373358000_16.5.884.31","doi-asserted-by":"crossref","unstructured":"Boley M Lucchese C Paurat D . Direct local pattern sampling by efficient two-step random procedures. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 2011. New York: ACM, 582\u201390.","DOI":"10.1145\/2020408.2020500"},{"key":"2015091506373358000_16.5.884.32","doi-asserted-by":"crossref","unstructured":"Cheng H Yan X Han J . Direct discriminative pattern mining for effective classification. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, Cancun, Mexico, 2008. Washington, DC: IEEE Computer Society, 169\u201378.","DOI":"10.1109\/ICDE.2008.4497425"},{"key":"2015091506373358000_16.5.884.33","doi-asserted-by":"crossref","unstructured":"Gamberger D Lavrac N . Expert-guided subgroup discovery: methodology and application. J Artif Intell Res 2002;17:501\u201327.","DOI":"10.1613\/jair.1089"},{"key":"2015091506373358000_16.5.884.34","doi-asserted-by":"crossref","unstructured":"He Z Yang C Guo G . Motif-all: discovering all phosphorylation motifs. BMC Bioinformatics 2011;12(Suppl 1):S22.","DOI":"10.1186\/1471-2105-12-S1-S22"},{"key":"2015091506373358000_16.5.884.35","doi-asserted-by":"publisher","DOI":"10.1109\/TCBB.2014.2321400"},{"key":"2015091506373358000_16.5.884.36","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/18.5.725"},{"key":"2015091506373358000_16.5.884.37","unstructured":"Yu LT Chung Fl Chan SC . Using emerging pattern based projected clustering and gene expression data for cancer detection. In Proceedings of the 2nd Conference on Asia-Pacific Bioinformatics, Dunedin, New Zealand, 2004. Darlinghurst: Australian Computer Society, Inc., 75\u201384."},{"key":"2015091506373358000_16.5.884.38","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btl298"},{"key":"2015091506373358000_16.5.884.39","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0033531"},{"key":"2015091506373358000_16.5.884.40","unstructured":"Li J Wong L . Emerging patterns and gene expression data. Genome Inf Ser 2001;12:3\u201313."},{"key":"2015091506373358000_16.5.884.41","unstructured":"Dong G Bailey J . Contrast Data Mining: Concepts, Algorithms, and Applications. Boca Raton: CRC Press, 2012."},{"key":"2015091506373358000_16.5.884.42","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-010-0356-2"},{"key":"2015091506373358000_16.5.884.43","unstructured":"Li W Han J Pei J . CMAR: accurate and efficient classification based on multiple class-association rules. In Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 2001. Los Alamitos: IEEE Computer Society, 369\u201376."},{"key":"2015091506373358000_16.5.884.44","doi-asserted-by":"crossref","unstructured":"Cong G Tan KL Tung AK . Mining top-k covering rule groups for gene expression data. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, MD, USA, 2005. New York: ACM, 670\u201381.","DOI":"10.1145\/1066157.1066234"},{"key":"2015091506373358000_16.5.884.45","doi-asserted-by":"crossref","unstructured":"Yin X Han J . CPAR: classification based on predictive association rules. In Proceedings of the 3rd SIAM International Conference on Data Mining, San Francisco, CA, USA, 2003. Philadelphia: SIAM, 331\u20135.","DOI":"10.1137\/1.9781611972733.40"},{"key":"2015091506373358000_16.5.884.46","doi-asserted-by":"crossref","unstructured":"Wang J Karypis G . HARMONY: efficiently mining the best rules for classification. In Proceedings of the 5th SIAM International Conference on Data Mining, Newport Beach, CA, USA, 2005. Philadelphia: SIAM, 205\u201316.","DOI":"10.1137\/1.9781611972757.19"},{"key":"2015091506373358000_16.5.884.47","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2011.204"},{"key":"2015091506373358000_16.5.884.48","doi-asserted-by":"crossref","unstructured":"Guns T Nijssen S Zimmermann A . Declarative heuristic search for pattern set mining. In 2011 IEEE 11th International Conference on Data Mining Workshops, IEEE, 2011, 1104\u201311.","DOI":"10.1109\/ICDMW.2011.60"},{"key":"2015091506373358000_16.5.884.49","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2011.10.007"},{"key":"2015091506373358000_16.5.884.50","doi-asserted-by":"crossref","unstructured":"Abudawood T Flach P . Evaluation measures for multi-class subgroup discovery. In Machine Learning and Knowledge Discovery in Databases, Heidelberg: Springer Berlin, 2009, 35\u201350.","DOI":"10.1007\/978-3-642-04180-8_20"},{"key":"2015091506373358000_16.5.884.51","doi-asserted-by":"publisher","DOI":"10.1109\/TITB.2007.891163"},{"key":"2015091506373358000_16.5.884.52","unstructured":"Lavra\u010d N Kav\u0161ek B Flach P . Subgroup discovery with CN2-SD. J Mach Learn Res 2004;5:153\u2013188."},{"key":"2015091506373358000_16.5.884.53","doi-asserted-by":"crossref","unstructured":"Todorovski L Flach PA Lavrac N . Predictive performance of weighted relative accuracy. In Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, France, 2000. Heidelberg: Springer Berlin, 255\u201364.","DOI":"10.1007\/3-540-45372-5_25"},{"key":"2015091506373358000_16.5.884.54","doi-asserted-by":"crossref","unstructured":"Li H Li J Wong L . Relative risk and odds ratio: a data mining perspective. In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Baltimore, Maryland, USA, 2005. New York: ACM, 368\u201377.","DOI":"10.1145\/1065167.1065215"},{"key":"2015091506373358000_16.5.884.55","doi-asserted-by":"crossref","unstructured":"Geerts F Goethals B Mielik\u00e4inen T . Tiling databases. In Discovery Science. Heidelberg: Springer Berlin, 2004, 278\u201389.","DOI":"10.1007\/978-3-540-30214-8_22"},{"key":"2015091506373358000_16.5.884.56","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-005-5011-x"},{"key":"2015091506373358000_16.5.884.57","unstructured":"Ma BLWHY . Integrating classification and association rule mining. In Proceeding of the 1998 International Conference on Knowledge Discovery and Data Mining. New York, NY: AAAI Press, 1998, 80\u201386."},{"key":"2015091506373358000_16.5.884.58","doi-asserted-by":"crossref","unstructured":"Morishita S Sese J . Transversing itemset lattices with statistical metric pruning. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York, NY: ACM, 2000, 226\u201336.","DOI":"10.1145\/335168.335226"},{"key":"2015091506373358000_16.5.884.59","unstructured":"Fang G Wang W Oatley B . Characterizing discriminative patterns. arXiv preprint arXiv 1102.4104 2011."},{"key":"2015091506373358000_16.5.884.60","doi-asserted-by":"publisher","DOI":"10.1109\/TFUZZ.2006.890662"},{"key":"2015091506373358000_16.5.884.61","doi-asserted-by":"crossref","unstructured":"del Jesus MJ Gonz\u00e1lez P Herrera F . Multiobjective genetic algorithm for extracting subgroup discovery fuzzy rules. In IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, Honolulu, Hawaii, USA, 2007. Washington, DC: IEEE Computer Society, 50\u20137.","DOI":"10.1109\/MCDM.2007.369416"},{"key":"2015091506373358000_16.5.884.62","doi-asserted-by":"crossref","unstructured":"Liu H Yang Y Chen Z Zheng Y . A tree-based contrast set mining approach to detecting group differences. INFORMS J Comput 2013;26(2):208\u201321.","DOI":"10.1287\/ijoc.2013.0558"},{"key":"2015091506373358000_16.5.884.63","doi-asserted-by":"crossref","unstructured":"Boley M Moens S G\u00e4rtner T . Linear space direct pattern sampling using coupling from the past. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012. New York: ACM, 69\u201377.","DOI":"10.1145\/2339530.2339545"},{"key":"2015091506373358000_16.5.884.64","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1000562"},{"key":"2015091506373358000_16.5.884.65","doi-asserted-by":"crossref","unstructured":"Nijssen S Guns T De Raedt L . Correlated itemset mining in roc space: a constraint programming approach. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009. New York: ACM, 647\u201356.","DOI":"10.1145\/1557019.1557092"},{"key":"2015091506373358000_16.5.884.66","doi-asserted-by":"publisher","DOI":"10.1016\/j.artint.2011.05.002"},{"key":"2015091506373358000_16.5.884.67","doi-asserted-by":"crossref","unstructured":"Azevedo PJ . Rules for contrast sets. Intell Data Anal 2010;14(6):623\u201340.","DOI":"10.3233\/IDA-2010-0444"},{"key":"2015091506373358000_16.5.884.68","doi-asserted-by":"crossref","unstructured":"Atzmueller M Lemmerich F . Fast subgroup discovery for continuous target concepts. In Foundations of Intelligent Systems, Heidelberg: Springer Berlin, 2009, 35\u201344.","DOI":"10.1007\/978-3-642-04125-9_7"},{"key":"2015091506373358000_16.5.884.69","unstructured":"Lemmerich F Rohlfs M Atzmueller M . Fast discovery of relevant subgroup patterns. In Florida Artificial Intelligence Research Society Conference 2010. http:\/\/www.aaai.org\/ocs\/index.php\/FLAIRS\/2010\/paper\/view\/1262 ."},{"key":"2015091506373358000_16.5.884.70","doi-asserted-by":"crossref","unstructured":"Berlanga F Del Jesus MJ Gonz\u00e1lez P Herrera F Mesonero M . Multiobjective evolutionary induction of subgroup discovery fuzzy rules: a case study in marketing. In Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining, Heidelberg: Springer Berlin, 2006, 337\u201349.","DOI":"10.1007\/11790853_27"},{"key":"2015091506373358000_16.5.884.71","doi-asserted-by":"publisher","DOI":"10.1109\/TFUZZ.2010.2060200"},{"key":"2015091506373358000_16.5.884.72","doi-asserted-by":"crossref","unstructured":"Duivesteijn W Knobbe A . Exploiting false discoveries\u2013statistical validation of patterns and quality measures in subgroup discovery. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, Vancouver, Canada, 2011. Washington, DC: IEEE Computer Society, 151\u201360.","DOI":"10.1109\/ICDM.2011.65"},{"key":"2015091506373358000_16.5.884.73","unstructured":"Webb G . Magnum Opus version 1.3. In Computer Software, Distributed by Rulequest Research , 2001. http:\/\/www.rulequest.com ."},{"key":"2015091506373358000_16.5.884.74","doi-asserted-by":"crossref","unstructured":"Boley M Grosskreutz H . Non-redundant subgroup discovery using a closure system. In Machine Learning and Knowledge Discovery in Databases. Heidelberg: Springer Berlin, 2009, 179\u201394.","DOI":"10.1007\/978-3-642-04180-8_29"},{"key":"2015091506373358000_16.5.884.75","unstructured":"Garriga GC Kralj P Lavra\u010d N . Closed sets for labeled data. J Mach Learn Res 2008;9:559\u201380."},{"key":"2015091506373358000_16.5.884.76","doi-asserted-by":"crossref","unstructured":"Clark P Niblett T . The CN2 induction algorithm. Mach Learn 1989;3(4):261\u201383.","DOI":"10.1007\/BF00116835"},{"key":"2015091506373358000_16.5.884.77","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btn569"},{"key":"2015091506373358000_16.5.884.78","doi-asserted-by":"publisher","DOI":"10.1038\/nbt1146"},{"key":"2015091506373358000_16.5.884.79","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/bts195"},{"key":"2015091506373358000_16.5.884.80","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0020025"},{"key":"2015091506373358000_16.5.884.81","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/bth379"},{"key":"2015091506373358000_16.5.884.82","doi-asserted-by":"publisher","DOI":"10.3732\/ajb.1100340"},{"key":"2015091506373358000_16.5.884.83","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btr136"},{"key":"2015091506373358000_16.5.884.84","doi-asserted-by":"publisher","DOI":"10.1016\/S0140-6736(11)61539-0"},{"key":"2015091506373358000_16.5.884.85","unstructured":"Fayyad UM Irani KB . Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, France, 1993. San Mateo: Morgan Kaufmann, 1022\u20137."},{"key":"2015091506373358000_16.5.884.86","unstructured":"Kohavi R John G Long R . MLC++: a machine learning library in C++. In Proceedings of the 6th International Conference on Tools with Artificial Intelligence, New Orleans, Louisiana, USA, 1994. Washington, DC: IEEE Computer Society, 740\u20133."},{"key":"2015091506373358000_16.5.884.87","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/16.10.906"},{"key":"2015091506373358000_16.5.884.88","doi-asserted-by":"publisher","DOI":"10.1126\/science.286.5439.531"},{"key":"2015091506373358000_16.5.884.89","doi-asserted-by":"publisher","DOI":"10.1142\/S0219720009004011"},{"key":"2015091506373358000_16.5.884.90","doi-asserted-by":"publisher","DOI":"10.1038\/35103535"},{"key":"2015091506373358000_16.5.884.91","doi-asserted-by":"publisher","DOI":"10.1038\/nrm1583"},{"key":"2015091506373358000_16.5.884.92","doi-asserted-by":"publisher","DOI":"10.1086\/321276"},{"key":"2015091506373358000_16.5.884.93","doi-asserted-by":"publisher","DOI":"10.1002\/gepi.20496"},{"key":"2015091506373358000_16.5.884.94","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btn652"},{"key":"2015091506373358000_16.5.884.95","doi-asserted-by":"publisher","DOI":"10.1038\/ng2110"},{"key":"2015091506373358000_16.5.884.96","doi-asserted-by":"crossref","unstructured":"Peng M Scholten A Heck AJ van Breukelen B . Identification of enriched PTM crosstalk motifs from large-scale experimental data sets. J Proteome Res 2013;13:249\u201359.","DOI":"10.1021\/pr4005579"},{"key":"2015091506373358000_16.5.884.97","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.0406123102"},{"key":"2015091506373358000_16.5.884.98","doi-asserted-by":"crossref","unstructured":"Kralj P Lavra\u010d N Gamberger D . Contrast set mining through subgroup discovery applied to brain ischaemina data. In Advances in Knowledge Discovery and Data Mining. Heidelberg: Springer Berlin, 2007, 579\u201386.","DOI":"10.1007\/978-3-540-71701-0_61"},{"key":"2015091506373358000_16.5.884.99","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-009-0234-y"},{"key":"2015091506373358000_16.5.884.100","doi-asserted-by":"publisher","DOI":"10.1021\/ci300254w"},{"key":"2015091506373358000_16.5.884.101","doi-asserted-by":"publisher","DOI":"10.1021\/ci5001828"}],"container-title":["Briefings in Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/academic.oup.com\/bib\/article-pdf\/16\/5\/884\/5025810\/bbu042.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,17]],"date-time":"2019-08-17T23:32:22Z","timestamp":1566084742000},"score":1,"resource":{"primary":{"URL":"https:\/\/academic.oup.com\/bib\/article-lookup\/doi\/10.1093\/bib\/bbu042"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,11,28]]},"references-count":101,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2015,9,15]]},"published-print":{"date-parts":[[2015,9]]}},"alternative-id":["10.1093\/bib\/bbu042"],"URL":"http:\/\/dx.doi.org\/10.1093\/bib\/bbu042","relation":{},"ISSN":["1467-5463","1477-4054"],"issn-type":[{"value":"1467-5463","type":"print"},{"value":"1477-4054","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,11,28]]}}}