iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.SWEVO.2020.100717
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T23:30:59Z","timestamp":1726356659965},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,6,11]],"date-time":"2021-06-11T00:00:00Z","timestamp":1623369600000},"content-version":"am","delay-in-days":283,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"name":"scientific interest group"},{"DOI":"10.13039\/100012950","name":"Inria","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100012950","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004794","name":"CNRS","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004794","id-type":"DOI","asserted-by":"publisher"}]},{"name":"RENATER"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Swarm and Evolutionary Computation"],"published-print":{"date-parts":[[2020,9]]},"DOI":"10.1016\/j.swevo.2020.100717","type":"journal-article","created":{"date-parts":[[2020,6,2]],"date-time":"2020-06-02T20:37:09Z","timestamp":1591130229000},"page":"100717","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Parallel surrogate-assisted optimization: Batched Bayesian Neural Network-assisted GA versus q-EGO"],"prefix":"10.1016","volume":"57","author":[{"given":"Guillaume","family":"Briffoteaux","sequence":"first","affiliation":[]},{"given":"Maxime","family":"Gobert","sequence":"additional","affiliation":[]},{"given":"Romain","family":"Ragonnet","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Gmys","sequence":"additional","affiliation":[]},{"given":"Mohand","family":"Mezmaz","sequence":"additional","affiliation":[]},{"given":"Nouredine","family":"Melab","sequence":"additional","affiliation":[]},{"given":"Daniel","family":"Tuyttens","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.swevo.2020.100717_bib1","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.jtbi.2014.05.023","article-title":"Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the asia-pacific","volume":"358","author":"Trauer","year":"2014","journal-title":"J. Theor. Biol."},{"key":"10.1016\/j.swevo.2020.100717_bib2","series-title":"Metaheuristics: From Design to Implementation","author":"Talbi","year":"2009"},{"issue":"4","key":"10.1016\/j.swevo.2020.100717_bib3","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1177\/1094342006070078","article-title":"Grid'5000: a large scale and highly reconfigurable experimental grid testbed","volume":"20","author":"Bolze","year":"2006","journal-title":"Int. J. High Perform. Comput. Appl."},{"key":"10.1016\/j.swevo.2020.100717_bib4","article-title":"Data-driven evolutionary optimization: an overview and case studies","author":"Jin","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib5","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1109\/TEVC.2018.2828091","article-title":"A taxonomy for metamodeling frameworks for evolutionary multiobjective optimization","volume":"23","author":"Deb","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib6","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s00158-016-1432-3","article-title":"Parallel surrogate-assisted global optimization with expensive functions \u2013 a survey","volume":"54","author":"Haftka","year":"2016","journal-title":"Struct. Multidiscip. Optim."},{"key":"10.1016\/j.swevo.2020.100717_bib7","series-title":"A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms","first-page":"3","author":"Shi","year":"2010"},{"key":"10.1016\/j.swevo.2020.100717_bib8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2016\/9420460","article-title":"A review of surrogate assisted multiobjective evolutionary algorithms","volume":"2016","author":"Diaz-Manriquez","year":"2016","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.swevo.2020.100717_bib9","doi-asserted-by":"crossref","first-page":"104869","DOI":"10.1016\/j.cor.2019.104869","article-title":"A survey on kriging-based infill algorithms for multiobjective simulation optimization","volume":"116","author":"Rojas-Gonzalez","year":"2020","journal-title":"Comput. Oper. Res."},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib10","first-page":"97","article-title":"A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise","volume":"86","author":"Kushner","year":"1964","journal-title":"J. Fluid Eng."},{"issue":"4","key":"10.1016\/j.swevo.2020.100717_bib11","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1023\/A:1008306431147","article-title":"Efficient global optimization of expensive black-box functions","volume":"13","author":"Jones","year":"1998","journal-title":"J. Global Optim."},{"key":"10.1016\/j.swevo.2020.100717_bib12","series-title":"Gaussian Processes for Machine Learning","author":"Rasmussen","year":"2006"},{"key":"10.1016\/j.swevo.2020.100717_bib13","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/JPROC.2015.2494218","article-title":"Taking the human out of the loop: a review of bayesian optimization","volume":"104","author":"Shahriari","year":"2016","journal-title":"Proc. IEEE"},{"issue":"5","key":"10.1016\/j.swevo.2020.100717_bib14","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1109\/TEVC.2002.800884","article-title":"A framework for evolutionary optimization with approximate fitness functions","volume":"6","author":"Jin","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"19","key":"10.1016\/j.swevo.2020.100717_bib15","doi-asserted-by":"crossref","first-page":"5647","DOI":"10.1007\/s00500-016-2140-z","article-title":"Comparison of metamodeling techniques in evolutionary algorithms","volume":"21","author":"D\u00edaz-Manr\u00edquez","year":"2017","journal-title":"Soft Comput."},{"key":"10.1016\/j.swevo.2020.100717_bib16","first-page":"297","article-title":"An evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks","volume":"vol. 51","author":"Deb","year":"2007"},{"issue":"2","key":"10.1016\/j.swevo.2020.100717_bib17","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/S0045-7825(99)00394-1","article-title":"Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics","volume":"186","author":"Poloni","year":"2000","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.swevo.2020.100717_bib18","series-title":"2008 IEEE Congress on Evolutionary Computation","first-page":"3177","article-title":"A parallel surrogate-assisted multi-objective evolutionary algorithm for computationally expensive optimization problems","author":"Syberfeldt","year":"2008"},{"issue":"18\u201336","key":"10.1016\/j.swevo.2020.100717_bib19","article-title":"A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations","volume":"6","author":"Gaspar-Cunha","year":"2005","journal-title":"Int. J. Comput. Syst. Signals"},{"issue":"6","key":"10.1016\/j.swevo.2020.100717_bib20","doi-asserted-by":"crossref","first-page":"2055","DOI":"10.1002\/qre.2026","article-title":"Meta-models in computer experiments: kriging versus artificial neural networks","volume":"32","author":"Vicario","year":"2016","journal-title":"Qual. Reliab. Eng. Int."},{"key":"10.1016\/j.swevo.2020.100717_bib21","series-title":"Uncertainty in Deep Learning","author":"Gal","year":"2016"},{"key":"10.1016\/j.swevo.2020.100717_bib22","series-title":"Proceedings of the 33rd International Conference on Machine Learning, Volume 48 of Proceedings of Machine Learning Research","first-page":"1050","article-title":"Dropout as a bayesian approximation: representing model uncertainty in deep learning","author":"Gal","year":"2016"},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib23","doi-asserted-by":"crossref","first-page":"546","DOI":"10.1186\/s12879-017-2648-6","article-title":"Modular programming for tuberculosis control, the \u201cAuTuMN\u201d platform","volume":"17","author":"Trauer","year":"2017","journal-title":"BMC Infect. Dis."},{"issue":"12","key":"10.1016\/j.swevo.2020.100717_bib24","doi-asserted-by":"crossref","first-page":"1138","DOI":"10.1093\/aje\/kwv323","article-title":"Scenario analysis for programmatic tuberculosis control in Western Province, Papua New Guinea","volume":"183","author":"Trauer","year":"2016","journal-title":"Am. J. Epidemiol."},{"issue":"2","key":"10.1016\/j.swevo.2020.100717_bib25","article-title":"Strategic planning for tuberculosis control in the republic of Fiji","volume":"4","author":"Ragonnet","year":"2019","journal-title":"Trop. Med. Infect. Dis."},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib26","doi-asserted-by":"crossref","first-page":"60","DOI":"10.5588\/ijtld.16.0297","article-title":"Is ipt more effective in high-burden settings? modelling the effect of tuberculosis incidence on ipt impact","volume":"21","author":"Ragonnet","year":"2017","journal-title":"Int. J. Tubercul. Lung Dis."},{"key":"10.1016\/j.swevo.2020.100717_bib27","series-title":"A Multi-Points Criterion for Deterministic Parallel Global Optimization Based on Gaussian Processes","author":"Ginsbourger","year":"2008"},{"key":"10.1016\/j.swevo.2020.100717_bib28","series-title":"A Comparative Study of Expected Improvement- Assisted Global Optimization with Different Surrogates","author":"Wang","year":"2016"},{"issue":"6","key":"10.1016\/j.swevo.2020.100717_bib29","first-page":"119","article-title":"A statistical approach to some basic mine valuation problems on the Witwatersrand","volume":"52","author":"Krige","year":"1951","journal-title":"J. Chem. Metall. Min. Soc. S. Afr."},{"key":"10.1016\/j.swevo.2020.100717_bib30","series-title":"Principles of Geostatistics. Econ Geol (Lancaster)","author":"Georges","year":"1963"},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib31","article-title":"Dicekriging, diceoptim: Two r packages for the analysis of computer experiments by kriging-based metamodeling and optimization","volume":"51","author":"Roustant","year":"2012","journal-title":"J. Stat. Software, Articles"},{"key":"10.1016\/j.swevo.2020.100717_bib32","series-title":"Statistics for Spatial Data","author":"Cressie","year":"1993"},{"key":"10.1016\/j.swevo.2020.100717_bib33","series-title":"Computational Intelligence in Expensive Optimization Problems, Springer Series in Evolutionary Learning and Optimization","first-page":"131","article-title":"Kriging is well-suited to parallelize optimization","author":"Ginsbourger","year":"2010"},{"key":"10.1016\/j.swevo.2020.100717_bib34","first-page":"1625","article-title":"Comparison of infill sampling criteria in kriging-based aerodynamic optimization","volume":"vol. 2","author":"Liu","year":"2012"},{"key":"10.1016\/j.swevo.2020.100717_bib35","series-title":"On a New Improvement-Based Acquisition Function for Bayesian Optimization","author":"Noe","year":"2018"},{"key":"10.1016\/j.swevo.2020.100717_bib36","first-page":"12","article-title":"Entropy search for information-efficient global optimization","volume":"13","author":"Hennig","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.swevo.2020.100717_bib37","series-title":"Efficient Multi-Objective Optimization through Population-Based Parallel Surrogate Search","author":"Akhtar","year":"2019"},{"key":"10.1016\/j.swevo.2020.100717_bib38","series-title":"A Comparison Study between Genetic Algorithms and Bayesian Optimize Algorithms by Novel Indices","first-page":"1485","author":"Mori","year":"2005"},{"key":"10.1016\/j.swevo.2020.100717_bib39","article-title":"Evolution control for parallel ann-assisted simulation-based optimization, application to the tuberculosis transmission control","author":"Briffoteaux","year":"2019","journal-title":"Future Gen. Comput. Syst."},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib40","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1186\/1471-2105-12-33","article-title":"A genetic algorithm-bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of bacillus spores and classification of bacillus species","volume":"12","author":"Correa","year":"2011","journal-title":"BMC Bioinf."},{"issue":"4","key":"10.1016\/j.swevo.2020.100717_bib41","doi-asserted-by":"crossref","first-page":"687","DOI":"10.2514\/2.1999","article-title":"Evolutionary optimization of computationally expensive problems via surrogate modeling","volume":"41","author":"Ong","year":"2003","journal-title":"AIAA J."},{"issue":"5","key":"10.1016\/j.swevo.2020.100717_bib42","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feedforward networks are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Network."},{"key":"10.1016\/j.swevo.2020.100717_bib43","series-title":"Learn++: an Incremental Learning Algorithm for Supervised Neural Networks","author":"Polikar","year":"2002"},{"key":"10.1016\/j.swevo.2020.100717_bib44","first-page":"2348","article-title":"Practical variational inference for neural networks","volume":"vol. 24","author":"Graves","year":"2011"},{"key":"10.1016\/j.swevo.2020.100717_bib45","article-title":"Scalable bayesian optimization using deep neural networks","author":"Snoek","year":"2015","journal-title":"Statistics"},{"key":"10.1016\/j.swevo.2020.100717_bib46","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.swevo.2020.100717_bib47","series-title":"An Overview of Gradient Descent Optimization Algorithms","author":"Ruder","year":"2016"},{"key":"10.1016\/j.swevo.2020.100717_bib48","series-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.swevo.2020.100717_bib49","series-title":"GCAI 2017. 3rd Global Conference on Artificial Intelligence, Volume 50 of EPiC Series in Computing","first-page":"221","article-title":"Implementation of incremental learning in artificial neural networks","author":"Andrade","year":"2017"},{"key":"10.1016\/j.swevo.2020.100717_bib50","series-title":"esa\/pagmo2: Pagmo 2.6","author":"Biscani","year":"2017"},{"key":"10.1016\/j.swevo.2020.100717_bib51","series-title":"Global Tuberculosis Report 2018","year":"2018"},{"issue":"11","key":"10.1016\/j.swevo.2020.100717_bib52","doi-asserted-by":"crossref","first-page":"e806","DOI":"10.1016\/S2214-109X(16)30199-1","article-title":"Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models","volume":"4","author":"Houben","year":"2016","journal-title":"Lancet Glob. Health"},{"issue":"4","key":"10.1016\/j.swevo.2020.100717_bib53","doi-asserted-by":"crossref","first-page":"e190","DOI":"10.1016\/S2352-3018(18)30024-9","article-title":"The global optima hiv allocative efficiency model: targeting resources in efforts to end aids","volume":"5","author":"Kelly","year":"2018","journal-title":"Lancet HIV"},{"issue":"1","key":"10.1016\/j.swevo.2020.100717_bib54","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1186\/s12936-017-2019-1","article-title":"Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations","volume":"16","author":"Scott","year":"2017","journal-title":"Malar. J."},{"issue":"3","key":"10.1016\/j.swevo.2020.100717_bib55","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0192944","article-title":"Optimization by adaptive stochastic descent","volume":"13","author":"Kerr","year":"2018","journal-title":"PloS One"},{"key":"10.1016\/j.swevo.2020.100717_bib56","series-title":"Proceedings OLA'2018 International Workshop on Optimization and Learning: Challenges and Applications","first-page":"25","article-title":"Ecg simulator tuning: a parallel multiobjective optimization approach","author":"Filipi\u010d","year":"2018"},{"key":"10.1016\/j.swevo.2020.100717_bib58","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.swevo.2019.04.008","article-title":"Bio-inspired computation: Where we stand and what\u2019s next","volume":"48","author":"Del Ser","year":"2019","journal-title":"Swarm Evol. Comput."}],"container-title":["Swarm and Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650220303709?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650220303709?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T10:23:27Z","timestamp":1658139807000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2210650220303709"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9]]},"references-count":57,"alternative-id":["S2210650220303709"],"URL":"https:\/\/doi.org\/10.1016\/j.swevo.2020.100717","relation":{},"ISSN":["2210-6502"],"issn-type":[{"value":"2210-6502","type":"print"}],"subject":[],"published":{"date-parts":[[2020,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Parallel surrogate-assisted optimization: Batched Bayesian Neural Network-assisted GA versus q-EGO","name":"articletitle","label":"Article Title"},{"value":"Swarm and Evolutionary Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.swevo.2020.100717","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100717"}}