{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T04:27:32Z","timestamp":1726806452344},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T00:00:00Z","timestamp":1724371200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000192","name":"National Oceanic and Atmospheric Administration","doi-asserted-by":"publisher","award":["NA22OAR4590512"],"id":[{"id":"10.13039\/100000192","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000104","name":"National Aeronautics and Space Administration","doi-asserted-by":"publisher","award":["80NSSC21M0028"],"id":[{"id":"10.13039\/100000104","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["OAC-2117834","EAR-1947893","EAR-1947875"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["softxjournal.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["SoftwareX"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.softx.2024.101863","type":"journal-article","created":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T06:06:10Z","timestamp":1725516370000},"page":"101863","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["PyGeoweaver: Tangible workflow tool for enhancing scientific research productivity and FAIRness"],"prefix":"10.1016","volume":"27","author":[{"given":"Gokul","family":"Prathin","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9810-0023","authenticated-orcid":false,"given":"Ziheng","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Sanjana","family":"Achan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.softx.2024.101863_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.techfore.2022.121598","article-title":"How AI revolutionizes innovation management\u2013Perceptions and implementation preferences of AI-based innovators","volume":"178","author":"F\u00fcller","year":"2022","journal-title":"Technol Forecast Soc Change"},{"key":"10.1016\/j.softx.2024.101863_bib0002","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijinfomgt.2019.08.002","article-title":"Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy","volume":"57","author":"Dwivedi","year":"2021","journal-title":"Int J Inf Manage"},{"key":"10.1016\/j.softx.2024.101863_bib0003","series-title":"Artificial intelligence in earth science","first-page":"1","article-title":"Introduction of artificial intelligence in Earth sciences","author":"Sun","year":"2023"},{"year":"2023","series-title":"Artificial intelligence in earth science: best practices and fundamental challenges","author":"Sun","key":"10.1016\/j.softx.2024.101863_bib0004"},{"issue":"2233","key":"10.1016\/j.softx.2024.101863_bib0005","article-title":"FAIR data pipeline: provenance-driven data management for traceable scientific workflows","volume":"380","author":"Mitchell","year":"2022","journal-title":"Philosoph Transact Royal Society A"},{"issue":"1","key":"10.1016\/j.softx.2024.101863_bib0006","first-page":"19","article-title":"Exotica: a research perspective on workflow management systems","volume":"18","author":"Mohan","year":"1995","journal-title":"Data Eng Bulletin"},{"key":"10.1016\/j.softx.2024.101863_bib0007","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.cageo.2011.11.031","article-title":"GeoPWTManager: a task-oriented web geoprocessing system","volume":"47","author":"Sun","year":"2012","journal-title":"Comput Geosci"},{"issue":"6","key":"10.1016\/j.softx.2024.101863_bib0008","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1111\/j.1467-9671.2010.01232.x","article-title":"GeoPW: laying blocks for the geospatial processing web","volume":"14","author":"Yue","year":"2010","journal-title":"Transactions in GIS"},{"key":"10.1016\/j.softx.2024.101863_bib0009","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.future.2014.10.008","article-title":"Pegasus, a workflow management system for science automation","volume":"46","author":"Deelman","year":"2015","journal-title":"Future Generat Comput Systems"},{"issue":"6","key":"10.1016\/j.softx.2024.101863_bib0010","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1145\/3486897","article-title":"Methods included: standardizing computational reuse and portability with the common workflow language","volume":"65","author":"Crusoe","year":"2022","journal-title":"Commun ACM"},{"issue":"4","key":"10.1016\/j.softx.2024.101863_bib0011","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1109\/MCSE.2019.2919688","article-title":"Toward a methodology and framework for workflow-driven team science","volume":"21","author":"Altintas","year":"2019","journal-title":"Comput Sci Eng"},{"issue":"5","key":"10.1016\/j.softx.2024.101863_bib0012","doi-asserted-by":"crossref","first-page":"528","DOI":"10.1016\/j.future.2008.06.012","article-title":"Workflows and e-Science: an overview of workflow system features and capabilities","volume":"25","author":"Deelman","year":"2009","journal-title":"Future Generat Comput Systems"},{"issue":"1","key":"10.1016\/j.softx.2024.101863_bib0013","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1002\/joc.7757","article-title":"From proof-of-concept to proof-of-value: approaching third-party data to operational workflows of national meteorological services","volume":"43","author":"Garcia-Marti","year":"2023","journal-title":"Int J Climatol"},{"issue":"1","key":"10.1016\/j.softx.2024.101863_bib0014","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1109\/17.658659","article-title":"From theory to practice: toward a typology of project-management styles","volume":"45","author":"Shenhar","year":"1998","journal-title":"IEEE Trans Eng Manag"},{"key":"10.1016\/j.softx.2024.101863_bib0015","unstructured":"M. Sonntag and D. Karastoyanova, \u201cNext generation interactive scientific experimenting based on the workflow technology,\u201d in Proceedings of the 21st IASTED International Conference on Modelling and Simulation (MS 2010), Citeseer, 2010."},{"issue":"2","key":"10.1016\/j.softx.2024.101863_bib0016","doi-asserted-by":"crossref","first-page":"119","DOI":"10.3390\/ijgi9020119","article-title":"Geoweaver: advanced cyberinfrastructure for managing hybrid geoscientific AI workflows","volume":"9","author":"Sun","year":"2020","journal-title":"ISPRS Int J Geoinf"},{"year":"2004","series-title":"Workflow management: models, methods, and systems","author":"Van Der Aalst","key":"10.1016\/j.softx.2024.101863_bib0017"},{"issue":"W1","key":"10.1016\/j.softx.2024.101863_bib0018","doi-asserted-by":"crossref","first-page":"W395","DOI":"10.1093\/nar\/gkaa434","article-title":"The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update","volume":"48","author":"Jalili","year":"2020","journal-title":"Nucleic Acids Res"},{"year":"2021","series-title":"Data pipelines with apache airflow","author":"Harenslak","key":"10.1016\/j.softx.2024.101863_bib0019"},{"key":"10.1016\/j.softx.2024.101863_bib0020","doi-asserted-by":"crossref","unstructured":"R. Mitchell et al., \u201cExploration of workflow management systems emerging features from users perspectives,\u201d in 2019 IEEE International Conference on Big Data (Big Data), IEEE, 2019, pp. 4537\u201344.","DOI":"10.1109\/BigData47090.2019.9005494"},{"year":"2016","series-title":"Common workflow language, v1. 0.\u201d eScholarship","author":"Amstutz","key":"10.1016\/j.softx.2024.101863_bib0021"},{"issue":"19","key":"10.1016\/j.softx.2024.101863_bib0022","doi-asserted-by":"crossref","first-page":"2520","DOI":"10.1093\/bioinformatics\/bts480","article-title":"Snakemake\u2014A scalable bioinformatics workflow engine","volume":"28","author":"K\u00f6ster","year":"2012","journal-title":"Bioinformatics"},{"issue":"4","key":"10.1016\/j.softx.2024.101863_bib0023","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1038\/nbt.3820","article-title":"Nextflow enables reproducible computational workflows","volume":"35","author":"Di Tommaso","year":"2017","journal-title":"Nat Biotechnol"},{"key":"10.1016\/j.softx.2024.101863_bib0024","doi-asserted-by":"crossref","unstructured":"I. Fette and A. Melnikov, \u201cThe websocket protocol,\u201d 2011.","DOI":"10.17487\/rfc6455"},{"key":"10.1016\/j.softx.2024.101863_bib0025","unstructured":"Z. Sun et al., \u201cMaking machine learning-based snow water equivalent forecasting research productive and reusable by geoweaver,\u201d in AGU Fall Meeting Abstracts, 2022, pp. IN23A\u201304."},{"key":"10.1016\/j.softx.2024.101863_bib0026","doi-asserted-by":"crossref","unstructured":"F. Hsu, Z. Sun, G. Prathin, and S. Achan, \u201cA review of machine learning in snow water equivalent monitoring,\u201d 2024.","DOI":"10.31223\/X57391"},{"issue":"6","key":"10.1016\/j.softx.2024.101863_bib0027","doi-asserted-by":"crossref","first-page":"3017","DOI":"10.5194\/hess-25-3017-2021","article-title":"Investigating ANN architectures and training to estimate snow water equivalent from snow depth","volume":"25","author":"Ntokas","year":"2021","journal-title":"Hydrol Earth Syst Sci"},{"key":"10.1016\/j.softx.2024.101863_bib0028","unstructured":"\u201cSnowCast Geoweaver Workflow GitHub Repository.\u201d Accessed: Nov. 27, 2023. [Online]. Available: https:\/\/github.com\/geo-smart\/SnowCast."},{"issue":"1","key":"10.1016\/j.softx.2024.101863_bib0029","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1002\/joc.3413","article-title":"Development of gridded surface meteorological data for ecological applications and modelling","volume":"33","author":"Abatzoglou","year":"2013","journal-title":"Int J Climatol"},{"issue":"1\u20132","key":"10.1016\/j.softx.2024.101863_bib0030","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/S0034-4257(02)00095-0","article-title":"MODIS snow-cover products","volume":"83","author":"Hall","year":"2002","journal-title":"Remote Sens Environ"},{"key":"10.1016\/j.softx.2024.101863_bib0031","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LGRS.2022.3225965","article-title":"On the Synergy of SMAP and AMSR2 for estimating snow depth on arctic sea ice","volume":"19","author":"He","year":"2022","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10.1016\/j.softx.2024.101863_bib0032","first-page":"2825","article-title":"Scikit-learn: machine Learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J Mach Learn Res"}],"container-title":["SoftwareX"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2352711024002334?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2352711024002334?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T17:58:49Z","timestamp":1726768729000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2352711024002334"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":32,"alternative-id":["S2352711024002334"],"URL":"https:\/\/doi.org\/10.1016\/j.softx.2024.101863","relation":{},"ISSN":["2352-7110"],"issn-type":[{"type":"print","value":"2352-7110"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"PyGeoweaver: Tangible workflow tool for enhancing scientific research productivity and FAIRness","name":"articletitle","label":"Article Title"},{"value":"SoftwareX","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.softx.2024.101863","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"101863"}}