{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T03:55:54Z","timestamp":1727063754798},"reference-count":17,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,3,1]],"date-time":"2016-03-01T00:00:00Z","timestamp":1456790400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"ACCESS Linnaeus Centre"},{"name":"the Strategic Research Area ICT-TNG program"},{"DOI":"10.13039\/501100004359","name":"Swedish Research Council","doi-asserted-by":"publisher","award":["621-2011-5847"],"id":[{"id":"10.13039\/501100004359","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing"],"published-print":{"date-parts":[[2016,3]]},"DOI":"10.1016\/j.sigpro.2015.09.003","type":"journal-article","created":{"date-parts":[[2015,9,21]],"date-time":"2015-09-21T22:24:49Z","timestamp":1442874289000},"page":"249-254","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Upper bounds on the error of sparse vector and low-rank matrix recovery"],"prefix":"10.1016","volume":"120","author":[{"given":"Mohammadreza","family":"Malek-Mohammadi","sequence":"first","affiliation":[]},{"given":"Cristian R.","family":"Rojas","sequence":"additional","affiliation":[]},{"given":"Magnus","family":"Jansson","sequence":"additional","affiliation":[]},{"given":"Massoud","family":"Babaie-Zadeh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.sigpro.2015.09.003_bib1","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1016\/j.crma.2008.03.014","article-title":"The restricted isometry property and its implications for compressed sensing","volume":"346","author":"Cand\u00e8s","year":"2008","journal-title":"C. R. Math."},{"issue":"5","key":"10.1016\/j.sigpro.2015.09.003_bib2","doi-asserted-by":"crossref","first-page":"2197","DOI":"10.1073\/pnas.0437847100","article-title":"Optimally sparse representation in general (nonorthogonal) dictionaries via \u21131 minimization","volume":"100","author":"Donoho","year":"2003","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"2","key":"10.1016\/j.sigpro.2015.09.003_bib3","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1137\/S0097539792240406","article-title":"Sparse approximate solutions to linear systems","volume":"24","author":"Natarajan","year":"1995","journal-title":"SIAM J. Comput."},{"issue":"2","key":"10.1016\/j.sigpro.2015.09.003_bib4","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/MSP.2007.914731","article-title":"An introduction to compressive sampling","volume":"25","author":"Cand\u00e8s","year":"2008","journal-title":"IEEE Signal Process. Mag."},{"issue":"2","key":"10.1016\/j.sigpro.2015.09.003_bib5","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1109\/TIT.2005.862083","article-title":"Robust uncertainty principles","volume":"52","author":"Cand\u00e9s","year":"2006","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"10","key":"10.1016\/j.sigpro.2015.09.003_bib6","doi-asserted-by":"crossref","first-page":"2231","DOI":"10.1109\/TIT.2004.834793","article-title":"Greed is good","volume":"50","author":"Tropp","year":"2004","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"1","key":"10.1016\/j.sigpro.2015.09.003_bib7","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1109\/TSP.2008.2007606","article-title":"A fast approach for overcomplete sparse decomposition based on smoothed \u21130 norm","volume":"57","author":"Mohimani","year":"2009","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.sigpro.2015.09.003_bib8","unstructured":"M. Malek-Mohammadi, A. Koochakzadeh, M. Babaie-Zadeh, M. Jansson, C. Rojas, Successive concave sparsity approximation: near-oracle performance in a wide range of sparsity levels, arXiv preprint arXiv:1505.06841."},{"issue":"12","key":"10.1016\/j.sigpro.2015.09.003_bib9","doi-asserted-by":"crossref","first-page":"7840","DOI":"10.1109\/TIT.2011.2170129","article-title":"On the error of estimating the sparsest solution of underdetermined linear systems","volume":"57","author":"Babaie-Zadeh","year":"2011","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.sigpro.2015.09.003_bib10","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1137\/070697835","article-title":"Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization","volume":"55","author":"Recht","year":"2010","journal-title":"SIAM Rev."},{"issue":"4","key":"10.1016\/j.sigpro.2015.09.003_bib11","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1109\/TSP.2013.2295557","article-title":"Recovery of low-rank matrices under affine constraints via a smoothed rank function","volume":"62","author":"Malek-Mohammadi","year":"2014","journal-title":"IEEE Trans. Signal Process."},{"issue":"20","key":"10.1016\/j.sigpro.2015.09.003_bib12","doi-asserted-by":"crossref","first-page":"5213","DOI":"10.1109\/TSP.2014.2340820","article-title":"Iterative concave rank approximation for recovering low-rank matrices","volume":"62","author":"Malek-Mohammadi","year":"2014","journal-title":"IEEE Trans. Signal Process."},{"issue":"3","key":"10.1016\/j.sigpro.2015.09.003_bib13","doi-asserted-by":"crossref","first-page":"496","DOI":"10.1016\/j.sigpro.2005.05.026","article-title":"A simple test to check the optimality of a sparse signal approximation","volume":"86","author":"Gribonval","year":"2006","journal-title":"Signal Process."},{"key":"10.1016\/j.sigpro.2015.09.003_bib14","doi-asserted-by":"crossref","first-page":"1276","DOI":"10.1214\/aop\/1176989118","article-title":"Limit of the smallest eigenvalue of a large dimensional sample covariance matrix","volume":"21","author":"Bai","year":"1993","journal-title":"The Ann. Probab."},{"issue":"4","key":"10.1016\/j.sigpro.2015.09.003_bib15","doi-asserted-by":"crossref","first-page":"2342","DOI":"10.1109\/TIT.2011.2111771","article-title":"Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements","volume":"57","author":"Cand\u00e8s","year":"2011","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.sigpro.2015.09.003_bib16","series-title":"Matrix Analysis","author":"Horn","year":"1990"},{"key":"10.1016\/j.sigpro.2015.09.003_bib17","series-title":"Topics in Matrix Analysis","author":"Horn","year":"1991"}],"container-title":["Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168415002972?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168415002972?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,5,15]],"date-time":"2021-05-15T09:13:23Z","timestamp":1621070003000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0165168415002972"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,3]]},"references-count":17,"alternative-id":["S0165168415002972"],"URL":"https:\/\/doi.org\/10.1016\/j.sigpro.2015.09.003","relation":{},"ISSN":["0165-1684"],"issn-type":[{"value":"0165-1684","type":"print"}],"subject":[],"published":{"date-parts":[[2016,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Upper bounds on the error of sparse vector and low-rank matrix recovery","name":"articletitle","label":"Article Title"},{"value":"Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sigpro.2015.09.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}