{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:01:31Z","timestamp":1732035691047},"reference-count":26,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,12,1]],"date-time":"2015-12-01T00:00:00Z","timestamp":1448928000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61034006"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2015,12]]},"DOI":"10.1016\/j.ress.2015.07.013","type":"journal-article","created":{"date-parts":[[2015,7,26]],"date-time":"2015-07-26T09:25:40Z","timestamp":1437902740000},"page":"74-82","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":216,"special_numbering":"C","title":["An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction"],"prefix":"10.1016","volume":"144","author":[{"given":"Xiujuan","family":"Zheng","sequence":"first","affiliation":[]},{"given":"Huajing","family":"Fang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2015.07.013_bib1","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1016\/j.ijepes.2014.04.059","article-title":"State of charge estimation for li-ion batteries using neural network modeling and unscented kalman filter-based error cancellation","volume":"62","author":"Williard","year":"2014","journal-title":"Int J Electr Power Energy Syst"},{"issue":"6","key":"10.1016\/j.ress.2015.07.013_bib2","doi-asserted-by":"crossref","first-page":"811","DOI":"10.1016\/j.microrel.2012.12.003","article-title":"An ensemble model for predicting the remaining useful performance of lithium-ion batteries","volume":"53","author":"Xing","year":"2013","journal-title":"Microelectron Reliab"},{"issue":"5","key":"10.1016\/j.ress.2015.07.013_bib3","doi-asserted-by":"crossref","first-page":"3531","DOI":"10.1016\/j.energy.2011.03.059","article-title":"Adaptive unscented kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles","volume":"36","author":"Sun","year":"2011","journal-title":"Energy"},{"key":"10.1016\/j.ress.2015.07.013_bib4","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.ress.2012.12.011","article-title":"Bayesian frameword for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft","volume":"113","author":"Jin","year":"2013","journal-title":"Reliab Eng Syst Saf"},{"issue":"8","key":"10.1016\/j.ress.2015.07.013_bib5","doi-asserted-by":"crossref","first-page":"2034","DOI":"10.1109\/TIM.2014.2303534","article-title":"A mutated particle filter technique for system state estimation and battery life prediction","volume":"63","author":"Li","year":"2014","journal-title":"IEEE Trans Instrum Meas"},{"issue":"6","key":"10.1016\/j.ress.2015.07.013_bib6","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1016\/j.jpowsour.2014.06.052","article-title":"Model based condition monitoring in lithium-ion batteries","volume":"268","author":"Singh","year":"2014","journal-title":"J Power Sour"},{"key":"10.1016\/j.ress.2015.07.013_bib7","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.apenergy.2013.07.008","article-title":"State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures","volume":"113","author":"Xing","year":"2014","journal-title":"Appl Energy"},{"key":"10.1016\/j.ress.2015.07.013_bib8","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.ress.2014.10.003","article-title":"A particle filtering and kernel smoothing-based approach for new design component prognostics","volume":"134","author":"Hu","year":"2015","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2015.07.013_bib9","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1016\/j.microrel.2012.12.004","article-title":"Remaining useful life prediction of lithium-ion battery with unscented particle filter technique","volume":"53","author":"Miao","year":"2013","journal-title":"Microelectron Reliab"},{"issue":"6","key":"10.1016\/j.ress.2015.07.013_bib10","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1016\/j.microrel.2013.01.006","article-title":"An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries","volume":"53","author":"Long","year":"2013","journal-title":"Microelectron Reliab"},{"key":"10.1016\/j.ress.2015.07.013_bib11","doi-asserted-by":"crossref","first-page":"680","DOI":"10.1016\/j.jpowsour.2012.11.146","article-title":"Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods","volume":"239","author":"Nuhic","year":"2013","journal-title":"J Power Sour"},{"key":"10.1016\/j.ress.2015.07.013_bib12","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.ress.2012.03.008","article-title":"Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life","volume":"103","author":"Hu","year":"2012","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2015.07.013_bib13","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.jpowsour.2013.03.129","article-title":"Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model","volume":"239","author":"Wang","year":"2013","journal-title":"J Power Sour"},{"issue":"5","key":"10.1016\/j.ress.2015.07.013_bib14","doi-asserted-by":"crossref","first-page":"1803","DOI":"10.1016\/j.ymssp.2010.11.018","article-title":"Prognostic modelling options for remaining useful life estimation by industry","volume":"25","author":"Sikorska","year":"2011","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2015.07.013_bib15","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.ress.2012.12.004","article-title":"Investigation of uncertainty treatment capacity of model-based and data-driven prognostic methods using simulated data","volume":"112","author":"Baraldi","year":"2013","journal-title":"Reliab Eng Syst Saf"},{"issue":"1","key":"10.1016\/j.ress.2015.07.013_bib16","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1109\/TR.2014.2299152","article-title":"Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction","volume":"63","author":"Liao","year":"2014","journal-title":"IEEE Trans Reliab"},{"issue":"3\u20134","key":"10.1016\/j.ress.2015.07.013_bib17","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1007\/s00521-013-1520-x","article-title":"Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm","volume":"25","author":"Liu","year":"2014","journal-title":"Neural Comput Appl"},{"issue":"4","key":"10.1016\/j.ress.2015.07.013_bib18","doi-asserted-by":"crossref","first-page":"814","DOI":"10.1016\/j.engappai.2012.02.015","article-title":"A data-model-fusion prognostic framework for dynamic system state forecasting","volume":"25","author":"Liu","year":"2012","journal-title":"Eng Appl Artif Intell."},{"issue":"2","key":"10.1016\/j.ress.2015.07.013_bib19","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1109\/TIM.2008.2005965","article-title":"Prognostics methods for battery health monitoring using a Bayesian framework","volume":"58","author":"Saha","year":"2009","journal-title":"IEEE Trans Instrum Meas"},{"key":"10.1016\/j.ress.2015.07.013_bib20","doi-asserted-by":"crossref","unstructured":"Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using Bayesian regression and state estimation. In: 2007 IEEE autotestcon. Baltimore, MD: IEEE; 2007. p. 646\u2013653.","DOI":"10.1109\/AUTEST.2007.4374280"},{"key":"10.1016\/j.ress.2015.07.013_bib21","doi-asserted-by":"crossref","first-page":"10314","DOI":"10.1016\/j.jpowsour.2011.08.040","article-title":"Prognostics of lithium-ion batteries based on Dempster\u2013Shafer theory and the Bayesian Monte Carlo method","volume":"196","author":"He","year":"2011","journal-title":"J Power Sour"},{"issue":"4","key":"10.1016\/j.ress.2015.07.013_bib22","doi-asserted-by":"crossref","first-page":"858","DOI":"10.1109\/TR.2012.2220698","article-title":"Extended Kalman filter models and resistance spectroscopy for prognostication and health monitoring of leadfree electronics under vibration","volume":"61","author":"Lall","year":"2012","journal-title":"IEEE Trans Reliab"},{"issue":"2","key":"10.1016\/j.ress.2015.07.013_bib23","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/S0959-1524(00)00043-3","article-title":"Predictive monitoring for abnormal situation management","volume":"11","author":"uricek","year":"2001","journal-title":"J Process Control"},{"key":"10.1016\/j.ress.2015.07.013_bib24","doi-asserted-by":"crossref","unstructured":"E. Zamanizadeh, K. Salahshoor, Y.S. Manjili. Prediction of abnormal situation in nonlinear systems using ekf. In: IEEE international conference on networking, sensing and control (ICNSC). Sanya: IEEE; 2008. p. 681\u2013686.","DOI":"10.1109\/ICNSC.2008.4525303"},{"key":"10.1016\/j.ress.2015.07.013_bib25","doi-asserted-by":"crossref","unstructured":"S.J. Julier, J.K. Hhlmann. A new extension of the Kalman filter to nonlinear systems. In: The 11th international symposium on aerospace\/defense sensing, simulation and controls, Orlando, FL, USA; 1997. p. 182-193.","DOI":"10.1117\/12.280797"},{"key":"10.1016\/j.ress.2015.07.013_bib26","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1117\/12.280797","article-title":"Sparse bayesian learning and the relevance vector machine","volume":"1","author":"Tipping","year":"2001","journal-title":"J Mach Learn Res"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832015002148?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832015002148?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,28]],"date-time":"2019-08-28T14:47:23Z","timestamp":1567003643000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832015002148"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,12]]},"references-count":26,"alternative-id":["S0951832015002148"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.ress.2015.07.013","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2015,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2015.07.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}