{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T15:56:41Z","timestamp":1726329401595},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.patrec.2021.03.023","type":"journal-article","created":{"date-parts":[[2021,3,21]],"date-time":"2021-03-21T14:14:53Z","timestamp":1616336093000},"page":"134-141","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":21,"special_numbering":"C","title":["A motor imagery EEG signal classification algorithm based on recurrence plot convolution neural network"],"prefix":"10.1016","volume":"146","author":[{"given":"XianJia","family":"Meng","sequence":"first","affiliation":[]},{"given":"Shi","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Shaohua","family":"Wan","sequence":"additional","affiliation":[]},{"given":"Keyang","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Cui","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2021.03.023_bib0001","doi-asserted-by":"crossref","first-page":"e1764","DOI":"10.1002\/pri.1764","article-title":"Brain-machine interface of upper limb recovery in stroke patients rehabilitation: a systematic review","volume":"24.2","author":"Carvalho","year":"2019","journal-title":"Physiother. Res. Int."},{"key":"10.1016\/j.patrec.2021.03.023_bib0002","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.3390\/s19061423","article-title":"EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges","volume":"19.6","author":"Padfield","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.patrec.2021.03.023_bib0003","first-page":"101","article-title":"Brain-machine interface-current status and future prospects","volume":"62.2","author":"Ushiba","year":"2010","journal-title":"Brain and nerve Shinkei kenkyu no shinpo"},{"key":"10.1016\/j.patrec.2021.03.023_bib0004","first-page":"18","article-title":"Brain-machine interface using P300 brain wave","volume":"47.5","author":"Cha","year":"2010","journal-title":"J. Inst. Electron. Eng. Korea SC"},{"key":"10.1016\/j.patrec.2021.03.023_bib0005","doi-asserted-by":"crossref","DOI":"10.1155\/2011\/972050","article-title":"Academic software applications for electromagnetic brain mapping using MEG and EEG","author":"Baillet","year":"2011","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.patrec.2021.03.023_bib0006","series-title":"2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society","article-title":"Brain-machine interfaces for real-time speech synthesis","author":"Guenther","year":"2011"},{"key":"10.1016\/j.patrec.2021.03.023_bib0007","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1109\/TSMCC.2012.2203301","article-title":"Brain-machine interfaces: basis and advances","volume":"42.6","author":"Becedas","year":"2012","journal-title":"IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.)"},{"key":"10.1016\/j.patrec.2021.03.023_bib0008","series-title":"2012 12th International Conference on Control, Automation and Systems","article-title":"Application of EEG for multimodal human-machine interface","author":"Park","year":"2012"},{"key":"10.1016\/j.patrec.2021.03.023_bib0009","series-title":"2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","article-title":"A brain-machine interface for control of burst suppression in medical coma","author":"Shanechi","year":"2013"},{"key":"10.1016\/j.patrec.2021.03.023_bib0010","series-title":"2013 International Conference on Technology, Informatics, Management, Engineering and Environment","article-title":"Detection of wrist movement using EEG signal for brain machine interface","author":"Ghani","year":"2013"},{"key":"10.1016\/j.patrec.2021.03.023_bib0011","first-page":"458","article-title":"Active data selection for motor imagery EEG classification","volume":"62.2","author":"Tomida","year":"2014","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.patrec.2021.03.023_bib0012","series-title":"2014 2nd International Conference on Electronic Design (ICED)","article-title":"Classification of hand movement imagery tasks for brain machine interface using feed-forward network","author":"Azalan","year":"2014"},{"key":"10.1016\/j.patrec.2021.03.023_bib0013","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.rehab.2014.11.002","article-title":"Brain-machine interface (BMI) in paralysis","volume":"58.1","author":"Chaudhary","year":"2015","journal-title":"Ann. Phys. Rehabil. Med."},{"issue":"2","key":"10.1016\/j.patrec.2021.03.023_bib0014","first-page":"159","article-title":"Eeg-based brain-machine interface (bmi) for controlling mobile robots: the trend of prior studies","volume":"3","author":"Krishnan","year":"2015","journal-title":"Int. J. Comput. Sci. Electron. Eng."},{"key":"10.1016\/j.patrec.2021.03.023_bib0015","doi-asserted-by":"crossref","first-page":"122","DOI":"10.3389\/fnins.2016.00122","article-title":"Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors","volume":"10","author":"Bhagat","year":"2016","journal-title":"Front. Neurosci."},{"issue":"7","key":"10.1016\/j.patrec.2021.03.023_bib0016","doi-asserted-by":"crossref","DOI":"10.1142\/S0129065716500295","article-title":"EEG-based detection of starting and stopping during gait cycle","volume":"26","author":"Hortal","year":"2016","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.patrec.2021.03.023_bib0017","doi-asserted-by":"crossref","first-page":"170","DOI":"10.3389\/fnins.2017.00170","article-title":"Multiple kernel based region importance learning for neural classification of gait states from EEG signals","volume":"11","author":"Zhang","year":"2017","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.patrec.2021.03.023_bib0018","series-title":"2017 IEEE Symposium Series on Computational Intelligence (SSCI)","article-title":"Brain machine interface for useful human interaction via extreme learning machine and state machine design","author":"Sargent","year":"2017"},{"key":"10.1016\/j.patrec.2021.03.023_bib0019","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.cobme.2017.11.004","article-title":"EEG-based brain\u2013computer interfaces","volume":"4","author":"McFarland","year":"2017","journal-title":"Curr. Opin. Biomed. Eng."},{"key":"10.1016\/j.patrec.2021.03.023_bib0020","series-title":"2018 International Conference on Intelligent Systems (IS)","article-title":"A study on mental state classification using EEG-based brain-machine interface","author":"Bird","year":"2018"},{"issue":"2","key":"10.1016\/j.patrec.2021.03.023_bib0021","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aa8063","article-title":"A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems","volume":"15","author":"Tahernezhad-Javazm","year":"2018","journal-title":"J. Neural Eng."},{"issue":"5","key":"10.1016\/j.patrec.2021.03.023_bib0022","doi-asserted-by":"crossref","DOI":"10.14704\/nq.2018.16.5.1426","article-title":"Feature extraction and classification algorithm of brain-computer interface based on human brain central nervous system","volume":"16","author":"Zhang","year":"2018","journal-title":"NeuroQuantology"},{"issue":"12","key":"10.1016\/j.patrec.2021.03.023_bib0023","doi-asserted-by":"crossref","first-page":"3558","DOI":"10.1109\/TNNLS.2018.2872595","article-title":"Adaptive neural control of a kinematically redundant exoskeleton robot using brain-machine interfaces","volume":"30","author":"Li","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patrec.2021.03.023_bib0024","series-title":"2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","article-title":"Development of a cognitive brain-machine interface based on a visual imagery method","author":"Koizumi","year":"2018"},{"key":"10.1016\/j.patrec.2021.03.023_bib0025","series-title":"2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","article-title":"Emotion recognition for brain machine interface: non-linear spectral analysis of EEG signals using empirical mode decomposition","author":"Carella","year":"2018"},{"issue":"3","key":"10.1016\/j.patrec.2021.03.023_bib0026","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/ab0ab5","article-title":"Deep learning for electroencephalogram (EEG) classification tasks: a review","volume":"16","author":"Craik","year":"2019","journal-title":"J. Neural Eng."},{"issue":"5","key":"10.1016\/j.patrec.2021.03.023_bib0027","doi-asserted-by":"crossref","first-page":"11841","DOI":"10.1007\/s10586-017-1501-4","article-title":"FPGA based seizure detection and control for brain computer interface","volume":"22","author":"Tamilarasi","year":"2019","journal-title":"Cluster Comput."},{"key":"10.1016\/j.patrec.2021.03.023_bib0028","series-title":"2019 IEEE Region 10 Symposium (TENSYMP)","article-title":"Real-time EEG classification of voluntary hand movement directions using brain machine interface","author":"Miah","year":"2019"},{"key":"10.1016\/j.patrec.2021.03.023_bib0029","series-title":"Computational Intelligence in Pattern Recognition","first-page":"71","article-title":"Implementing brain-machine interface (BMI) with smart computing","author":"Verma","year":"2020"},{"issue":"1","key":"10.1016\/j.patrec.2021.03.023_bib0030","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/ab598f","article-title":"Enhance decoding of pre-movement EEG patterns for brain\u2013computer interfaces","volume":"17","author":"Wang","year":"2020","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.patrec.2021.03.023_bib0031","doi-asserted-by":"crossref","first-page":"328","DOI":"10.3389\/fnhum.2014.00328","article-title":"Mental representation and motor imagery training","volume":"8","author":"Schack","year":"2014","journal-title":"Front. Human Neurosci."},{"issue":"7s","key":"10.1016\/j.patrec.2021.03.023_bib0032","doi-asserted-by":"crossref","DOI":"10.1143\/JJAP.50.07HF02","article-title":"Estimation of scatterer diameter by normalized power spectrum of high-frequency ultrasonic RF echo for assessment of red blood cell aggregation","volume":"50","author":"Fukushima","year":"2011","journal-title":"Japan. J. Appl. Phys."},{"issue":"5","key":"10.1016\/j.patrec.2021.03.023_bib0033","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1002\/cpa.21799","article-title":"Stable Gabor phase retrieval and spectral clustering","volume":"72","author":"Grohs","year":"2019","journal-title":"Commun. Pure Appl. Math."},{"key":"10.1016\/j.patrec.2021.03.023_bib0034","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1109\/TSP.2019.2959260","article-title":"Kinetic euclidean distance matrices","volume":"68","author":"Tabaghi","year":"2019","journal-title":"IEEE Trans. Signal Process."},{"issue":"1","key":"10.1016\/j.patrec.2021.03.023_bib0035","first-page":"73","article-title":"Automating footwear impressions retrieval through texture","volume":"43","author":"Farrugia","year":"2019","journal-title":"Inf. Secur."},{"issue":"4","key":"10.1016\/j.patrec.2021.03.023_bib0036","doi-asserted-by":"crossref","first-page":"2047","DOI":"10.1121\/1.4916618","article-title":"Separable spectro-temporal Gabor filter bank features: reducing the complexity of robust features for automatic speech recognition","volume":"137","author":"Sch\u00e4dler","year":"2015","journal-title":"J. Acoust. Soc. Am."}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865521001100?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865521001100?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T17:08:40Z","timestamp":1673284120000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865521001100"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":36,"alternative-id":["S0167865521001100"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.patrec.2021.03.023","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A motor imagery EEG signal classification algorithm based on recurrence plot convolution neural network","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2021.03.023","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}