iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.PATREC.2019.07.016
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,21]],"date-time":"2024-07-21T09:10:10Z","timestamp":1721553010663},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002341","name":"Academy of Finland","doi-asserted-by":"publisher","award":["309903","316258"],"id":[{"id":"10.13039\/501100002341","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.patrec.2019.07.016","type":"journal-article","created":{"date-parts":[[2019,7,23]],"date-time":"2019-07-23T23:35:19Z","timestamp":1563924919000},"page":"52-59","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Bayesian receiver operating characteristic metric for linear classifiers"],"prefix":"10.1016","volume":"128","author":[{"given":"Syeda Sakira","family":"Hassan","sequence":"first","affiliation":[]},{"given":"Heikki","family":"Huttunen","sequence":"additional","affiliation":[]},{"given":"Jari","family":"Niemi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1048-5860","authenticated-orcid":false,"given":"Jussi","family":"Tohka","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2019.07.016_bib0001","series-title":"Introduction to Machine Learning","author":"Alpaydin","year":"2014"},{"key":"10.1016\/j.patrec.2019.07.016_bib0002","series-title":"The Elements of Statistical Learning","author":"Hastie","year":"2009"},{"key":"10.1016\/j.patrec.2019.07.016_bib0003","series-title":"Pattern Classification","author":"Duda","year":"2001"},{"key":"10.1016\/j.patrec.2019.07.016_bib0004","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1111\/j.2517-6161.1974.tb00994.x","article-title":"Cross-validatory choice and assessment of statistical predictions","author":"Stone","year":"1974","journal-title":"J. R. Stat. Soc. Ser. B"},{"issue":"1","key":"10.1016\/j.patrec.2019.07.016_bib0005","doi-asserted-by":"crossref","first-page":"53","DOI":"10.2174\/157489310790596385","article-title":"Performance of error estimators for classification","volume":"5","author":"Dougherty","year":"2010","journal-title":"Curr. Bioinform."},{"key":"10.1016\/j.patrec.2019.07.016_bib0006","series-title":"Breakthroughs in Statistics","first-page":"569","article-title":"Bootstrap methods: another look at the jackknife","author":"Efron","year":"1992"},{"issue":"382","key":"10.1016\/j.patrec.2019.07.016_bib0007","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1080\/01621459.1983.10477973","article-title":"Estimating the error rate of a prediction rule: improvement on cross-validation","volume":"78","author":"Efron","year":"1983","journal-title":"J. Am. Stat. Assoc."},{"issue":"438","key":"10.1016\/j.patrec.2019.07.016_bib0008","first-page":"548","article-title":"Improvements on cross-validation: the 0.632+ bootstrap method","volume":"92","author":"Efron","year":"1997","journal-title":"J. Am. Stat. Assoc."},{"issue":"6","key":"10.1016\/j.patrec.2019.07.016_bib0009","doi-asserted-by":"crossref","first-page":"1267","DOI":"10.1016\/j.patcog.2003.08.017","article-title":"Bolstered error estimation","volume":"37","author":"Braga-Neto","year":"2004","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.patrec.2019.07.016_bib0010","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/0031-3203(78)90029-8","article-title":"Additive estimators for probabilities of correct classification","volume":"10","author":"Glick","year":"1978","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.patrec.2019.07.016_bib0011","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.patrec.2008.08.010","article-title":"An experimental comparison of performance measures for classification","volume":"30","author":"Ferri","year":"2009","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2019.07.016_bib0012","series-title":"Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association Conference on","first-page":"245","article-title":"Facing imbalanced data\u2013recommendations for the use of performance metrics","author":"Jeni","year":"2013"},{"issue":"9","key":"10.1016\/j.patrec.2019.07.016_bib0013","first-page":"1263","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"10.1016\/j.patrec.2019.07.016_bib0014","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.artmed.2005.03.002","article-title":"Learning from imbalanced data in surveillance of nosocomial infection","volume":"37","author":"Cohen","year":"2006","journal-title":"Artif. Intell. Med."},{"issue":"7","key":"10.1016\/j.patrec.2019.07.016_bib0015","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1016\/S0031-3203(96)00142-2","article-title":"The use of the area under the roc curve in the evaluation of machine learning algorithms","volume":"30","author":"Bradley","year":"1997","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patrec.2019.07.016_bib0016","series-title":"Advances in Neural Information Processing Systems 16","first-page":"313","article-title":"Auc optimization vs. error rate minimization","author":"Cortes","year":"2004"},{"issue":"1","key":"10.1016\/j.patrec.2019.07.016_bib0017","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1109\/TSP.2010.2084572","article-title":"Bayesian minimum mean-square error estimation for classification error\u2014part I: definition and the Bayesian MMSE error estimator for discrete classification","volume":"59","author":"Dalton","year":"2011","journal-title":"IEEE Trans. Signal Process."},{"issue":"1","key":"10.1016\/j.patrec.2019.07.016_bib0018","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1109\/TSP.2010.2084573","article-title":"Bayesian minimum mean-square error estimation for classification error\u2014part II: the Bayesian MMSE error estimator for linear classification of Gaussian distributions","volume":"59","author":"Dalton","year":"2011","journal-title":"IEEE Trans. Signal Process."},{"issue":"11","key":"10.1016\/j.patrec.2019.07.016_bib0019","doi-asserted-by":"crossref","first-page":"3739","DOI":"10.1016\/j.patcog.2015.05.005","article-title":"Model selection for linear classifiers using Bayesian error estimation","volume":"48","author":"Huttunen","year":"2015","journal-title":"Pattern Recognit."},{"issue":"4","key":"10.1016\/j.patrec.2019.07.016_bib0020","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1109\/TCBB.2015.2465966","article-title":"Optimal ROC-based classification and performance analysis under Bayesian uncertainty models","volume":"13","author":"Dalton","year":"2016","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"issue":"12","key":"10.1016\/j.patrec.2019.07.016_bib0021","doi-asserted-by":"crossref","first-page":"1410","DOI":"10.1002\/sim.4196","article-title":"Equivalence of improvement in area under roc curve and linear discriminant analysis coefficient under assumption of normality","volume":"30","author":"Demler","year":"2011","journal-title":"Stat. Med."},{"key":"10.1016\/j.patrec.2019.07.016_bib0022","series-title":"Bayesian Data Analysis","author":"Gelman","year":"2013"},{"issue":"6","key":"10.1016\/j.patrec.2019.07.016_bib0023","doi-asserted-by":"crossref","first-page":"1311","DOI":"10.1007\/s00138-012-0464-y","article-title":"Mind reading with regularized multinomial logistic regression","volume":"24","author":"Huttunen","year":"2013","journal-title":"Mach. Vis. Appl."},{"issue":"3","key":"10.1016\/j.patrec.2019.07.016_bib0024","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1109\/TPAMI.1980.4767011","article-title":"On dimensionality, sample size, classification error, and complexity of classification algorithm in pattern recognition","author":"Raudys","year":"1980","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patrec.2019.07.016_bib0025","first-page":"1871","article-title":"Liblinear: a library for large linear classification","volume":"9","author":"Fan","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2019.07.016_bib0026","doi-asserted-by":"crossref","article-title":"Observer Performance Methods for Diagnostic Imaging","author":"Chakraborty","year":"2017","DOI":"10.1201\/9781351228190"},{"key":"10.1016\/j.patrec.2019.07.016_bib0027","series-title":"The statistical evaluation of medical tests for classification and prediction","author":"Pepe","year":"2003"},{"issue":"5","key":"10.1016\/j.patrec.2019.07.016_bib0028","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.1109\/TPAMI.2014.2359660","article-title":"Why does rebalancing class-unbalanced data improve auc for linear discriminant analysis?","volume":"37","author":"Xue","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865518308195?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865518308195?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,21]],"date-time":"2024-07-21T08:41:02Z","timestamp":1721551262000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865518308195"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":28,"alternative-id":["S0167865518308195"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.patrec.2019.07.016","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bayesian receiver operating characteristic metric for linear classifiers","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2019.07.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}