{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T00:13:22Z","timestamp":1726359202246},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U22A2096","62441601"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010909","name":"Excellent Young Scientists Fund","doi-asserted-by":"publisher","award":["cstc2021ycjhbgzxm0339"],"id":[{"id":"10.13039\/501100010909","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012546","name":"Chongqing Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["cstc2021jcyjmsxmX0847","cstc2022nscq-msx1342","CSTB2022NSCQ-MSX1265"],"id":[{"id":"10.13039\/100012546","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010012","name":"National Aerospace Science Foundation of China","doi-asserted-by":"publisher","award":["62201107","62221005","62036007","62206034","62176195"],"id":[{"id":"10.13039\/501100010012","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100017503","name":"Chongqing Municipal Health and Family Planning Commission","doi-asserted-by":"publisher","award":["KJQN202300606","KJZD-K202300604","KJQN202300619","cstc2020jscx-dxwtB0032","KJQN202200618","KJQN202200644"],"id":[{"id":"10.13039\/100017503","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010242","name":"Jiangsu Planned Projects for Postdoctoral Research Funds","doi-asserted-by":"publisher","award":["2023CQBSHTB3097"],"id":[{"id":"10.13039\/501100010242","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100008780","name":"Xi'an University of Posts and Telecommunications","doi-asserted-by":"publisher","award":["BYJS202214"],"id":[{"id":"10.13039\/501100008780","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,1]]},"DOI":"10.1016\/j.patcog.2024.110854","type":"journal-article","created":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T16:54:06Z","timestamp":1722272046000},"page":"110854","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["SANet: Face super-resolution based on self-similarity prior and attention integration"],"prefix":"10.1016","volume":"157","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8351-4143","authenticated-orcid":false,"given":"Ling","family":"Li","sequence":"first","affiliation":[]},{"given":"Yan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Yuan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7985-0037","authenticated-orcid":false,"given":"Xinbo","family":"Gao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.patcog.2024.110854_b1","doi-asserted-by":"crossref","first-page":"2533","DOI":"10.1109\/TCSVT.2022.3224940","article-title":"FaceFormer: Aggregating global and local representation for face hallucination","volume":"33","author":"Wang","year":"2023","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patcog.2024.110854_b2","doi-asserted-by":"crossref","first-page":"1219","DOI":"10.1109\/TIP.2020.3043093","article-title":"Learning spatial attention for face super-resolution","volume":"30","author":"Chen","year":"2021","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"T. Lu, Y. Wang, Y. Zhang, Y. Wang, L. Wei, Z. Wang, J. Jiang, Face hallucination via split-attention in split-attention network, in: Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 5501\u20135509.","key":"10.1016\/j.patcog.2024.110854_b3","DOI":"10.1145\/3474085.3475682"},{"key":"10.1016\/j.patcog.2024.110854_b4","doi-asserted-by":"crossref","first-page":"9002","DOI":"10.1109\/TIP.2020.3023580","article-title":"Robust face super-resolution via position relation model based on global face context","volume":"29","author":"Chen","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2024.110854_b5","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.neunet.2022.04.026","article-title":"Multi-level landmark-guided deep network for face super-resolution","volume":"152","author":"Zhuang","year":"2022","journal-title":"Neural Netw."},{"issue":"11","key":"10.1016\/j.patcog.2024.110854_b6","doi-asserted-by":"crossref","first-page":"7317","DOI":"10.1109\/TCSVT.2022.3181828","article-title":"Propagating facial prior knowledge for multitask learning in face super-resolution","volume":"32","author":"Wang","year":"2022","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patcog.2024.110854_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109503","article-title":"A composite network model for face super-resolution with multi-order head attention facial priors","volume":"139","author":"Wei","year":"2023","journal-title":"Pattern Recognit."},{"doi-asserted-by":"crossref","unstructured":"X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794\u20137803.","key":"10.1016\/j.patcog.2024.110854_b8","DOI":"10.1109\/CVPR.2018.00813"},{"key":"10.1016\/j.patcog.2024.110854_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107539","article-title":"Constructing multilayer locality-constrained matrix regression framework for noise robust face super-resolution","volume":"110","author":"Gao","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110352","article-title":"Prior based pyramid residual clique network for human body image super-resolution","volume":"150","author":"Wang","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b11","doi-asserted-by":"crossref","first-page":"6455","DOI":"10.1109\/TIP.2022.3212311","article-title":"Attention-driven graph neural network for deep face super-resolution","volume":"31","author":"Bao","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2024.110854_b12","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.patrec.2023.03.025","article-title":"Attentive ExFeat based deep generative adversarial network for noise robust face super-resolution","volume":"169","author":"Tomar","year":"2023","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2024.110854_b13","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.patrec.2022.09.012","article-title":"Single image super-resolution using wasserstein generative adversarial network with gradient penalty","volume":"163","author":"Tang","year":"2022","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2024.110854_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110470","article-title":"ScopeViT: Scale-aware vision transformer","volume":"153","author":"Nie","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b15","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.patrec.2020.05.031","article-title":"Multi-task learning for natural language processing in the 2020s: Where are we going?","volume":"136","author":"Worsham","year":"2020","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2024.110854_b16","doi-asserted-by":"crossref","first-page":"1978","DOI":"10.1109\/TIP.2023.3261747","article-title":"Ctcnet: A cnn-transformer cooperation network for face image super-resolution","volume":"32","author":"Gao","year":"2023","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2024.110854_b17","doi-asserted-by":"crossref","first-page":"8554","DOI":"10.1109\/TMM.2023.3238522","article-title":"SCTANet: A spatial attention-guided CNN-transformer aggregation network for deep face image super-resolution","volume":"25","author":"Bao","year":"2023","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.patcog.2024.110854_b18","doi-asserted-by":"crossref","first-page":"3236","DOI":"10.1109\/TIP.2022.3167280","article-title":"Pro-uigan: Progressive face hallucination from occluded thumbnails","volume":"31","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.patcog.2024.110854_b19","doi-asserted-by":"crossref","first-page":"8910","DOI":"10.1109\/TPAMI.2021.3123085","article-title":"Face restoration via plug-and-play 3d facial priors","volume":"44","author":"Hu","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.110854_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109451","article-title":"YOGA: Deep object detection in the wild with lightweight feature learning and multiscale attention","volume":"139","author":"Sunkara","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b21","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.patrec.2024.02.012","article-title":"CrossFormer: Cross-guided attention for multi-modal object detection","volume":"179","author":"Lee","year":"2024","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2024.110854_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109913","article-title":"ICAFusion: Iterative cross-attention guided feature fusion for multispectral object detection","volume":"145","author":"Shen","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109964","article-title":"Transformer-based visual object tracking via fine\u2013coarse concatenated attention and cross concatenated MLP","volume":"146","author":"Gao","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110357","article-title":"Efficient image analysis with triple attention vision transformer","volume":"150","author":"Li","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110289","article-title":"Single image super-resolution based on trainable feature matching attention network","volume":"149","author":"Chen","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110291","article-title":"Dual residual attention network for image denoising","volume":"149","author":"Wu","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107255","article-title":"A novel image-dehazing network with a parallel attention block","volume":"102","author":"Yin","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110273","article-title":"Continual learning for cross-modal image-text retrieval based on domain-selective attention","volume":"149","author":"Yang","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109897","article-title":"Sparse self-attention transformer for image inpainting","volume":"145","author":"Huang","year":"2024","journal-title":"Pattern Recognit."},{"doi-asserted-by":"crossref","unstructured":"M. Zontak, M. Irani, Internal statistics of a single natural image, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 977\u2013984.","key":"10.1016\/j.patcog.2024.110854_b30","DOI":"10.1109\/CVPR.2011.5995401"},{"unstructured":"A. Abdelhamed, M. Afifi, R. Timofte, M.S. Brown, Ntire 2020 challenge on real image denoising: Dataset, methods and results, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 496\u2013497.","key":"10.1016\/j.patcog.2024.110854_b31"},{"doi-asserted-by":"crossref","unstructured":"Y. Mei, Y. Fan, Y. Zhou, Image super-resolution with non-local sparse attention, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 3517\u20133526.","key":"10.1016\/j.patcog.2024.110854_b32","DOI":"10.1109\/CVPR46437.2021.00352"},{"doi-asserted-by":"crossref","unstructured":"Y. Mei, Y. Fan, Y. Zhou, L. Huang, T.S. Huang, H. Shi, Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 5690\u20135699.","key":"10.1016\/j.patcog.2024.110854_b33","DOI":"10.1109\/CVPR42600.2020.00573"},{"doi-asserted-by":"crossref","unstructured":"J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte, Swinir: Image restoration using swin transformer, in: Proceedings of the IEEE International Conference on Computer Vision, 2021, pp. 1833\u20131844.","key":"10.1016\/j.patcog.2024.110854_b34","DOI":"10.1109\/ICCVW54120.2021.00210"},{"key":"10.1016\/j.patcog.2024.110854_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.110195","article-title":"SSIR: Spatial shuffle multi-head self-attention for single image super-resolution","volume":"148","author":"Zhao","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.110854_b36","series-title":"2017 IEEE International Symposium on Circuits and Systems","first-page":"1","article-title":"Face hallucination using deep collaborative representation for local and non-local patches","author":"Lu","year":"2017"},{"doi-asserted-by":"crossref","unstructured":"A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, 2005, pp. 60\u201365.","key":"10.1016\/j.patcog.2024.110854_b37","DOI":"10.1109\/CVPR.2005.38"},{"doi-asserted-by":"crossref","unstructured":"A. Bulat, G. Tzimiropoulos, How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks), in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1021\u20131030.","key":"10.1016\/j.patcog.2024.110854_b38","DOI":"10.1109\/ICCV.2017.116"},{"doi-asserted-by":"crossref","unstructured":"M. Haris, G. Shakhnarovich, N. Ukita, Deep back-projection networks for super-resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1664\u20131673.","key":"10.1016\/j.patcog.2024.110854_b39","DOI":"10.1109\/CVPR.2018.00179"},{"key":"10.1016\/j.patcog.2024.110854_b40","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2023.3303397","article-title":"CycleMLP: a MLP-like architecture for dense visual predictions","author":"Chen","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.patcog.2024.110854_b41","doi-asserted-by":"crossref","first-page":"1499","DOI":"10.1109\/LSP.2016.2603342","article-title":"Joint face detection and alignment using multitask cascaded convolutional networks","volume":"23","author":"Zhang","year":"2016","journal-title":"IEEE Signal Process. Lett."},{"doi-asserted-by":"crossref","unstructured":"C. Wang, J. Jiang, Z. Zhong, X. Liu, Spatial-Frequency Mutual Learning for Face Super-Resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023, pp. 22356\u201322366.","key":"10.1016\/j.patcog.2024.110854_b42","DOI":"10.1109\/CVPR52729.2023.02141"},{"doi-asserted-by":"crossref","unstructured":"B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, Enhanced deep residual networks for single image super-resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 136\u2013144.","key":"10.1016\/j.patcog.2024.110854_b43","DOI":"10.1109\/CVPRW.2017.151"},{"doi-asserted-by":"crossref","unstructured":"Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu, Image super-resolution using very deep residual channel attention networks, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 286\u2013301.","key":"10.1016\/j.patcog.2024.110854_b44","DOI":"10.1007\/978-3-030-01234-2_18"},{"key":"10.1016\/j.patcog.2024.110854_b45","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"391","article-title":"Accelerating the super-resolution convolutional neural network","author":"Dong","year":"2016"},{"doi-asserted-by":"crossref","unstructured":"W. Shi, J. Caballero, F. Husz\u00e1r, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874\u20131883.","key":"10.1016\/j.patcog.2024.110854_b46","DOI":"10.1109\/CVPR.2016.207"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324006058?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324006058?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T06:27:38Z","timestamp":1726295258000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324006058"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,1]]},"references-count":46,"alternative-id":["S0031320324006058"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.patcog.2024.110854","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SANet: Face super-resolution based on self-similarity prior and attention integration","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.110854","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"110854"}}