{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T00:50:11Z","timestamp":1728175811891},"reference-count":130,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.neuroimage.2016.12.064","type":"journal-article","created":{"date-parts":[[2017,1,11]],"date-time":"2017-01-11T06:03:31Z","timestamp":1484114611000},"page":"77-102","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":224,"special_numbering":"C","title":["Longitudinal multiple sclerosis lesion segmentation: Resource and challenge"],"prefix":"10.1016","volume":"148","author":[{"given":"Aaron","family":"Carass","sequence":"first","affiliation":[]},{"given":"Snehashis","family":"Roy","sequence":"additional","affiliation":[]},{"given":"Amod","family":"Jog","sequence":"additional","affiliation":[]},{"given":"Jennifer L.","family":"Cuzzocreo","sequence":"additional","affiliation":[]},{"given":"Elizabeth","family":"Magrath","sequence":"additional","affiliation":[]},{"given":"Adrian","family":"Gherman","sequence":"additional","affiliation":[]},{"given":"Julia","family":"Button","sequence":"additional","affiliation":[]},{"given":"James","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"Ferran","family":"Prados","sequence":"additional","affiliation":[]},{"given":"Carole H.","family":"Sudre","sequence":"additional","affiliation":[]},{"given":"Manuel","family":"Jorge Cardoso","sequence":"additional","affiliation":[]},{"given":"Niamh","family":"Cawley","sequence":"additional","affiliation":[]},{"given":"Olga","family":"Ciccarelli","sequence":"additional","affiliation":[]},{"given":"Claudia A.M.","family":"Wheeler-Kingshott","sequence":"additional","affiliation":[]},{"given":"S\u00e9bastien","family":"Ourselin","sequence":"additional","affiliation":[]},{"given":"Laurence","family":"Catanese","sequence":"additional","affiliation":[]},{"given":"Hrishikesh","family":"Deshpande","sequence":"additional","affiliation":[]},{"given":"Pierre","family":"Maurel","sequence":"additional","affiliation":[]},{"given":"Olivier","family":"Commowick","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Barillot","sequence":"additional","affiliation":[]},{"given":"Xavier","family":"Tomas-Fernandez","sequence":"additional","affiliation":[]},{"given":"Simon K.","family":"Warfield","sequence":"additional","affiliation":[]},{"given":"Suthirth","family":"Vaidya","sequence":"additional","affiliation":[]},{"given":"Abhijith","family":"Chunduru","sequence":"additional","affiliation":[]},{"given":"Ramanathan","family":"Muthuganapathy","sequence":"additional","affiliation":[]},{"given":"Ganapathy","family":"Krishnamurthi","sequence":"additional","affiliation":[]},{"given":"Andrew","family":"Jesson","sequence":"additional","affiliation":[]},{"given":"Tal","family":"Arbel","sequence":"additional","affiliation":[]},{"given":"Oskar","family":"Maier","sequence":"additional","affiliation":[]},{"given":"Heinz","family":"Handels","sequence":"additional","affiliation":[]},{"given":"Leonardo O.","family":"Iheme","sequence":"additional","affiliation":[]},{"given":"Devrim","family":"Unay","sequence":"additional","affiliation":[]},{"given":"Saurabh","family":"Jain","sequence":"additional","affiliation":[]},{"given":"Diana M.","family":"Sima","sequence":"additional","affiliation":[]},{"given":"Dirk","family":"Smeets","sequence":"additional","affiliation":[]},{"given":"Mohsen","family":"Ghafoorian","sequence":"additional","affiliation":[]},{"given":"Bram","family":"Platel","sequence":"additional","affiliation":[]},{"given":"Ariel","family":"Birenbaum","sequence":"additional","affiliation":[]},{"given":"Hayit","family":"Greenspan","sequence":"additional","affiliation":[]},{"given":"Pierre-Louis","family":"Bazin","sequence":"additional","affiliation":[]},{"given":"Peter A.","family":"Calabresi","sequence":"additional","affiliation":[]},{"given":"Ciprian M.","family":"Crainiceanu","sequence":"additional","affiliation":[]},{"given":"Lotta M.","family":"Ellingsen","sequence":"additional","affiliation":[]},{"given":"Daniel S.","family":"Reich","sequence":"additional","affiliation":[]},{"given":"Jerry L.","family":"Prince","sequence":"additional","affiliation":[]},{"given":"Dzung L.","family":"Pham","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2016.12.064_bib1","doi-asserted-by":"crossref","unstructured":"A\u00eft-Ali, L., Prima, S., Heiler, P., Carsin, B., Edan, G., Barillot, C., 2005. STREM: a robust multidimensional parametric method to segment MS lesions in MRI. In: Proceedings of the 8th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2005). Springer Berlin Heidelberg. pp. 409\u2013416.","DOI":"10.1007\/11566465_51"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib2","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1016\/j.neuroimage.2003.10.012","article-title":"Probabilistic segmentation of white matter lesions in MR imaging","volume":"21","author":"Anbeek","year":"2004","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib3","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.media.2007.06.004","article-title":"Symmetric diffeomorphic image registration with cross-correlation","volume":"12","author":"Avants","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib4","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1007\/s12021-011-9109-y","article-title":"An open source multivariate framework for n-tissue segmentation with evaluation on public data","volume":"9","author":"Avants","year":"2011","journal-title":"Neuroinformatics"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib5","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1177\/1051228405283362","article-title":"Magnetic resonance imaging advances in multiple sclerosis","volume":"15","author":"Bakshi","year":"2005","journal-title":"J. Neuroimaging"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib6","doi-asserted-by":"crossref","unstructured":"Barnes, C., Shechtman, E., Golman, D.B., Finkelstein, A., 2010. The generalized patchmatch correspondence algorithm. In: 2010 European Conference on Computer Vision (ECCV 2010). Springer Berlin Heidelberg. pp. 29\u201343.","DOI":"10.1007\/978-3-642-15558-1_3"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib7","doi-asserted-by":"crossref","first-page":"1543","DOI":"10.1002\/jmri.24293","article-title":"Automated identification of brain new lesions in multiple sclerosis using subtraction images","volume":"39","author":"Battaglini","year":"2014","journal-title":"Mag. Reson. Im."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib8","doi-asserted-by":"crossref","first-page":"616","DOI":"10.1016\/j.media.2008.06.008","article-title":"Homeomorphic brain image segmentation with topological and statistical atlases","volume":"12","author":"Bazin","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib9","doi-asserted-by":"crossref","unstructured":"Bazin, P.L., Pham, D.L., Gandler, W., McAuliffe, M., 2005. Free software tools for atlas-based volumetric neuroimage analysis. In: Proceedings of the SPIE Medical Imaging (SPIE-MI 2005), San Diego, CA, February 19\u201321, 2005, pp. 1824\u20131833.","DOI":"10.1117\/12.595602"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TPAMI.1980.4766964","article-title":"A convergence theorem for the fuzzy ISO-DATA clustering algorithms","volume":"20","author":"Bezdek","year":"1980","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib11","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1016\/S1053-8119(03)00406-3","article-title":"Automatic change detection in multimodal serial MRI","volume":"20","author":"Bosc","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib12","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib13","doi-asserted-by":"crossref","unstructured":"Bricq, S., Collet, C., Armspach, J.P., 2008. Lesion detection in 3D brain MRI using trimmed likelihood estimator and probabilistic atlas. In: Proceedings of the 5th International Symposium on Biomedical Imaging (ISBI 2008), pp. 93\u201396.","DOI":"10.1109\/ISBI.2008.4540940"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib14","doi-asserted-by":"crossref","first-page":"1229","DOI":"10.1109\/TMI.2016.2528821","article-title":"Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation","volume":"35","author":"Brosch","year":"2016","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib15","doi-asserted-by":"crossref","unstructured":"Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R., 2015. Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2015). Springer Berlin Heidelberg. pp. 3\u201311.","DOI":"10.1007\/978-3-319-24574-4_1"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib16","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1016\/S0733-8619(18)31146-0","article-title":"1H Nuclear magnetic resonance imaging in multiple sclerosis","volume":"1","author":"Buonanno","year":"1983","journal-title":"Neurol. Clin."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib17","doi-asserted-by":"crossref","first-page":"1982","DOI":"10.1016\/j.neuroimage.2011.03.045","article-title":"Simple paradigm for extra-cerebral tissue removal","volume":"56","author":"Carass","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib18","doi-asserted-by":"crossref","unstructured":"Carass, A., Wheeler, M.B., Cuzzocreo, J., Bazin, P.L., Bassett, S.S., Prince, J.L., 2007. A joint registration and segmentation approach to skull stripping. In: Proceedings of the 4th International Symposium on Biomedical Imaging (ISBI 2007), IEEE. pp. 656\u2013659.","DOI":"10.1109\/ISBI.2007.356937"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib19","unstructured":"Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Evans, A.C., 1997. BrainWeb: Online interface to a 3D MRI simulated brain database. In: Proceedings of the 3rd International Conference on Functional Mapping of the Human Brain, p. S425."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib20","doi-asserted-by":"crossref","unstructured":"Collins, D.L., Montagnat, J., Zijdenbos, A.P., Evans, A.C., Arnold, D.L., 2001. Automated estimation of brain volume in multiple sclerosis with BICCR. In: 17th Inf. Proceedings in Med. Imaging (IPMI 2001), Springer Berlin Heidelberg. pp. 141\u2013147.","DOI":"10.1007\/3-540-45729-1_12"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib21","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1109\/42.712135","article-title":"Design and construction of a realistic digital brain phantom","volume":"17","author":"Collins","year":"1998","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib22","doi-asserted-by":"crossref","first-page":"1502","DOI":"10.1016\/S0140-6736(08)61620-7","article-title":"Multiple sclerosis","volume":"372","author":"Compston","year":"2008","journal-title":"Lancet"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib23","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1016\/j.nic.2008.09.002","article-title":"The clinical epidemiology of multiple sclerosis","volume":"18","author":"Confavreux","year":"2008","journal-title":"Neuroimaging Clin. N. Am."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib24","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1109\/TMI.2007.906087","article-title":"An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images","volume":"27","author":"Coup\u00e9","year":"2008","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib25","doi-asserted-by":"crossref","unstructured":"Deshpande, H., Maurel, P., Barillot, C., 2015. Adaptive dictionary learning for competitive classification of multiple sclerosis lesions. In: Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI 2015), pp. 136\u2013139.","DOI":"10.1109\/ISBI.2015.7163834"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib26","doi-asserted-by":"crossref","first-page":"297","DOI":"10.2307\/1932409","article-title":"Measures of the amount of ecologic association between species","volume":"26","author":"Dice","year":"1945","journal-title":"Ecology"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib27","doi-asserted-by":"crossref","unstructured":"Dugas-Phocion, G., Gonzalez, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N., 2004. Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI. In: Proceedings of the 2nd International Symposium on Biomedical Imaging (ISBI 2004), pp. 157\u2013160.","DOI":"10.1109\/ISBI.2004.1398498"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib28","unstructured":"Ekin, A., 2006. Feature-based brain mid-sagittal plane detection by RANSAC. In: Proceedings of the 14th European Signal Processing Conference, pp. 1\u20134."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib29","doi-asserted-by":"crossref","first-page":"1490","DOI":"10.1109\/TMI.2013.2258403","article-title":"Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI","volume":"32","author":"Elliott","year":"2013","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib30","doi-asserted-by":"crossref","unstructured":"Elliott, C., Arnold, D.L., Collins, D.L., Arbel, T., 2014. A generative model for automatic detection of resolving multiple sclerosis lesions. In: Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014), Springer Berlin Heidelberg. pp. 118\u2013129.","DOI":"10.1007\/978-3-319-12289-2_11"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib31","doi-asserted-by":"crossref","unstructured":"Elliott, C., Francois, S., Arnold, D.L., Collins, D.L., Arbel, T., 2010. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images. In: Proceedings of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2010), Springer Berlin Heidelberg. pp. 290\u2013297.","DOI":"10.1007\/978-3-642-15745-5_36"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib32","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1002\/ana.410410123","article-title":"The role of MRI in clinical trials of multiple sclerosis","volume":"41","author":"Evans","year":"1997","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib33","doi-asserted-by":"crossref","unstructured":"Ferrari, R.J., Wei, X., Zhang, Y., Scott, J.N., Mitchell, J.R., 2003. Segmentation of multiple sclerosis lesions using support vector machines. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2003), pp. 16\u201326.","DOI":"10.1117\/12.481377"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib34","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.1212\/WNL.58.8.1147","article-title":"MRI techniques to monitor MS evolution","volume":"58","author":"Filippi","year":"2002","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib35","doi-asserted-by":"crossref","first-page":"1601","DOI":"10.1093\/brain\/118.6.1601","article-title":"Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis","volume":"118","author":"Filippi","year":"1995","journal-title":"Brain"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib36","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1097\/WCO.0000000000000095","article-title":"Magnetic resonance outcome measures in multiple sclerosis trials","volume":"27","author":"Filippi","year":"2014","journal-title":"Curr. Opin. Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib37","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/S1474-4422(12)70003-0","article-title":"Association between pathological and MRI findings in multiple sclerosis for the Attendees of the Correlation between Pathological MRI findings in MS workshop","volume":"11","author":"Filippi","year":"2012","journal-title":"Lancet Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib38","first-page":"14:1","article-title":"Multiple sclerosis lesion detection using constrained GMM and curve evolution","volume":"2009","author":"Freifeld","year":"2009","journal-title":"J. Biomed. Imaging"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib39","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1002\/ana.22472","article-title":"Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions","volume":"70","author":"Gait\u00e1n","year":"2011","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib40","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1007\/s00234-014-1343-1","article-title":"A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies","volume":"56","author":"Ganiler","year":"2014","journal-title":"Neuroradiology"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib41","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2012.09.004","article-title":"Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging","volume":"17","author":"Garc\u00eda-Lorenzo","year":"2013","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib42","doi-asserted-by":"crossref","unstructured":"Garc\u00eda-Lorenzo, D., Lecoeur, J., Arnold, D.L., Collins, D.L., Barillot, C., 2009. Multiple sclerosis lesion segmentation using an automated multimodal graph cuts. In: Proceedings of the 12th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2009), Springer Berlin Heidelberg. pp. 584\u2013591.","DOI":"10.1007\/978-3-642-04271-3_71"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib43","doi-asserted-by":"crossref","first-page":"1455","DOI":"10.1109\/TMI.2011.2114671","article-title":"Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis","volume":"30","author":"Garc\u00eda-Lorenzo","year":"2011","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib44","doi-asserted-by":"crossref","unstructured":"Garc\u00eda-Lorenzo, D., Prima, S., Collins, D.L., Arnold, D.L., Morrissey, S.P., Barillot, C., 2008. Combining robust expectation maximization and mean shift algorithms for multiple sclerosis brain segmentation. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008) workshop on Medical Image Analysis on Multiple Sclerosis (MIAMS 2008), pp. 82\u201391.","DOI":"10.54294\/1pbpd4"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib45","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1016\/j.neuroimage.2011.03.080","article-title":"Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images","volume":"57","author":"Geremia","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib46","doi-asserted-by":"crossref","unstructured":"Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N., 2010. Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: Proceedings of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2010), Springer Berlin Heidelberg. pp. 111\u2013118.","DOI":"10.1007\/978-3-642-15705-9_14"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib47","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s10994-006-6226-1","article-title":"Extremely randomized trees","volume":"36","author":"Geurts","year":"2006","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib48","doi-asserted-by":"crossref","first-page":"S4","DOI":"10.1186\/1471-2105-8-S2-S4","article-title":"Inferring biological networks with output kernel trees","volume":"8","author":"Geurts","year":"2007","journal-title":"BMC Bioinforma."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib49","doi-asserted-by":"crossref","unstructured":"Global Burden of Disease Study 2013 Mortality and Causes of Death Collaborators, 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990\u20132013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117\u2013171.","DOI":"10.1016\/S0140-6736(14)61682-2"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib50","doi-asserted-by":"crossref","unstructured":"Harmouche, R., Collins, D.L., Arnold, D.L., Francis, S., Arbel, T., 2006. Bayesian MS lesion classification modeling regional and local spatial information. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR), 2006, pp. 984\u2013987.","DOI":"10.1109\/ICPR.2006.318"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib51","doi-asserted-by":"crossref","unstructured":"Havaei, M., Guizard, N., Chapados, N., Bengio, Y., 2016. HeMIS: Hetero-modal image segmentation. In: Proceedings of the 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016), Springer Berlin Heidelberg. pp. 469\u2013477.","DOI":"10.1007\/978-3-319-46723-8_54"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib52","first-page":"664","article-title":"Enhancing patterns in multiple sclerosis: evolution and persistence","volume":"22","author":"He","year":"2001","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib53","doi-asserted-by":"crossref","first-page":"1251","DOI":"10.1109\/TMI.2009.2013851","article-title":"Comparison and evaluation of methods for liver segmentation from CT datasets","volume":"28","author":"Heimann","year":"2009","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib54","doi-asserted-by":"crossref","first-page":"1432","DOI":"10.1016\/j.media.2012.05.008","article-title":"MIND","volume":"16","author":"Heinrich","year":"2012","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib55","doi-asserted-by":"crossref","unstructured":"Heinrich, M.P., Jenkinson, M., Papie\u017c, B.W., Brady, M., Schnabel, J.A., 2013. Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Proceedings of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2013), Springer Berlin Heidelberg. pp. 187\u2013194.","DOI":"10.1007\/978-3-642-40811-3_24"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib56","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/0734-189X(84)90131-2","article-title":"New likelihood test methods for change detection in image sequences","volume":"26","author":"Hsu","year":"1984","journal-title":"Comput. Vision., Graph., Image Process."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib57","doi-asserted-by":"crossref","unstructured":"Iheme, L.O., Unay, D., Baskaya, O., Sennaz, A., Kandemir, M., Yalciner, Z.B., Tepe, M.S., Kahraman, T., Unal, G., 2013. Concordance between computer-based neuroimaging findings and expert assessments in dementia grading. In: Signal Processing and Communications Applications Conference (SIU), pp. 1\u20134.","DOI":"10.1109\/SIU.2013.6531409"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib58","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/j.nicl.2015.05.003","article-title":"Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images","volume":"8","author":"Jain","year":"2015","journal-title":"NeuroImage: Clin."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib59","doi-asserted-by":"crossref","unstructured":"Jog, A., Carass, A., Pham, D.L., Prince, J.L., 2015. Multi-output decision trees for lesion segmentation in multiple sclerosis. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2015), Orlando, FL, February 21\u201326, 2015, pp. 94131C\u201394131C\u20136.","DOI":"10.1117\/12.2082157"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib60","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.media.2016.08.009","article-title":"Random forest regression for magnetic resonance image synthesis","volume":"35","author":"Jog","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib61","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1109\/42.491417","article-title":"Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI","volume":"15","author":"Johnston","year":"1996","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib62","doi-asserted-by":"crossref","first-page":"11074","DOI":"10.1007\/s00415-015-7689-4","article-title":"Can MS lesion stages be distinguished with MRI? A postmortem MRI and histopathology study","volume":"262","author":"Jonkman","year":"2015","journal-title":"J. Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib63","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1109\/42.414608","article-title":"Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images","volume":"14","author":"Kamber","year":"1996","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib64","first-page":"118","article-title":"Longitudinal intensity normalization in multiple sclerosis patients","volume":"8680","author":"Karpate","year":"2014","journal-title":"Transl. Res. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib65","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.compbiomed.2007.12.005","article-title":"Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model","volume":"38","author":"Khayati","year":"2008","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib66","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1002\/(SICI)1522-2586(199904)9:4<519::AID-JMRI3>3.0.CO;2-M","article-title":"Quantitative follow-up of patients with multiple sclerosis using MRI","volume":"9","author":"Kikinis","year":"1999","journal-title":"Jrnl. Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib67","doi-asserted-by":"crossref","first-page":"1085","DOI":"10.1109\/42.816072","article-title":"MRI simulation-based evaluation of image-processing and classification methods","volume":"18","author":"Kwan","year":"1999","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib68","unstructured":"Li, H., Zhao, R., Wang, X., 2014. Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification. CoRR arXiv:1412.4526."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib69","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.ins.2011.10.011","article-title":"Segmentation of multiple sclerosis lesions in brain MRI","volume":"186","author":"Llad\u00f3","year":"2012","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib70","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s12021-009-9061-2","article-title":"The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software","volume":"8","author":"Lucas","year":"2010","journal-title":"Neuroinformatics"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib71","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.media.2016.07.009","article-title":"ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI","volume":"35","author":"Maier","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib72","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.jneumeth.2014.11.011","article-title":"Extra Tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences","volume":"240","author":"Maier","year":"2015","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib73","unstructured":"Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A., 2009. Supervised dictionary learning. In: Advances in Neural Information Processing Systems (NIPS) 21, Curran Associates, Inc., pp. 1033\u20131040."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib74","doi-asserted-by":"crossref","first-page":"1293","DOI":"10.1098\/rstb.2001.0915","article-title":"A probabilistic atlas and reference system for the human brain","volume":"356","author":"Mazziotta","year":"2001","journal-title":"Philos. Trans. R. Soc. Lond. B"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib75","doi-asserted-by":"crossref","unstructured":"McAuliffe, M.J., Lalonde, F.M., McGarry, D., Gandler, W., Csaky, K., Trus, B.L., 2001. Medical image processing, analysis & visualization in clinical research. In: IEEE Compuer Based Medical Systems (CBMS) 2001, pp. 381\u2013386.","DOI":"10.1109\/CBMS.2001.941749"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib76","first-page":"1","article-title":"Patch-based segmentation with spatial consistency","author":"Mechrez","year":"2016","journal-title":"J. Biomed. Imaging"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib77","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.3174\/ajnr.A0701","article-title":"MR imaging intensity modeling of damage and repair in multiple sclerosis","volume":"28","author":"Meier","year":"2007","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib78","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/813696","article-title":"MRBrainS challenge","author":"Mendrik","year":"2015","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib79","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","article-title":"The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)","volume":"34","author":"Menze","year":"2015","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib80","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.neuroimage.2014.04.056","article-title":"Lesion segmentation from multimodal MRI using random forest following ischemic stroke","volume":"98","author":"Mitra","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib81","doi-asserted-by":"crossref","first-page":"024003","DOI":"10.1117\/1.JMI.1.2.024003","article-title":"Global image registration using a symmetric block-matching approach","volume":"1","author":"Modat","year":"2014","journal-title":"J. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib82","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1016\/j.mri.2012.01.007","article-title":"Automatic white matter lesion segmentation using an adaptive outlier detection method","volume":"30","author":"Ong","year":"2012","journal-title":"Mag. Reson. Im."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib83","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1017\/S0317167100027724","article-title":"Magnetic resonance imaging in the assessment of disease activity in multiple sclerosis","volume":"15","author":"Paty","year":"1988","journal-title":"Can. J. Neurol. Sci."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib84","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1098\/rspl.1895.0041","article-title":"Notes on regression and inheritance in the case of two parents","volume":"58","author":"Pearson","year":"1895","journal-title":"Proc. R. Soc. Lond."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib85","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1002\/ana.22366","article-title":"Diagnostic criteria for multiple sclerosis","volume":"69","author":"Polman","year":"2011","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib86","doi-asserted-by":"crossref","unstructured":"Prima, S., Ayache, N., Janke, A., Francis, S.J., Arnold, D.L., Collins, D.L., 2002. Statistical analysis of longitudinal MRI data: applications for detection of disease activity in MS. In: Proceedings of the 5th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2002), Springer Berlin Heidelberg. pp. 363\u2013371.","DOI":"10.1007\/3-540-45786-0_45"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib87","doi-asserted-by":"crossref","first-page":"668","DOI":"10.1002\/ana.22622","article-title":"Heterogeneity in longitudinal evolution of ring-enhancing MS lesions","volume":"70","author":"Qian","year":"2011","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib88","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.neuroimage.2011.02.076","article-title":"Avoiding asymmetry-induced bias in longitudinal image processing","volume":"57","author":"Reuter","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib89","doi-asserted-by":"crossref","unstructured":"Rey, D., Subsol, G., Delingette, H., Ayache, N., 1999. Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. In: 16th Inf. Proceedings in Med. Imaging (IPMI 1999), Springer Berlin Heidelberg. pp. 154\u2013167.","DOI":"10.1007\/3-540-48714-X_12"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib90","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/S1361-8415(02)00056-7","article-title":"Automatic detection and segmentation of evolving processes in 3D medical images","volume":"6","author":"Rey","year":"2002","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib91","doi-asserted-by":"crossref","unstructured":"Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M., 2014. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014), Springer Berlin Heidelberg. pp. 520\u2013527.","DOI":"10.1007\/978-3-319-10404-1_65"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib92","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1007\/s00234-015-1552-2","article-title":"A toolbox for multiple sclerosis lesion segmentation","volume":"57","author":"Roura","year":"2015","journal-title":"Neuroradiology"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib93","doi-asserted-by":"crossref","unstructured":"Roy, S., Carass, A., Prince, J.L., Pham, D.L., 2014a. Subject specific sparse dictionary learning for atlas based brain MRI segmentation. In: Machine Learning in Medical Imaging (MLMI 2014), Springer Berlin Heidelberg. pp. 248\u2013255.","DOI":"10.1007\/978-3-319-10581-9_31"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib94","doi-asserted-by":"crossref","unstructured":"Roy, S., Carass, A., Prince, J.L., Pham, D.L., 2015a. Longitudinal patch-based segmentation of multiple sclerosis white matter lesions. In: Machine Learning in Medical Imaging (MLMI 2015), Springer Berlin Heidelberg. pp. 194\u2013202.","DOI":"10.1007\/978-3-319-24888-2_24"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib95","doi-asserted-by":"crossref","unstructured":"Roy, S., Carass, A., Shiee, N., Pham, D.L., Prince, J.L., 2010. MR contrast synthesis for lesion segmentation. In: Proceedings of the 7th International Symposium on Biomedical Imaging (ISBI 2010), pp. 932\u2013935.","DOI":"10.1109\/ISBI.2010.5490140"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib96","doi-asserted-by":"crossref","unstructured":"Roy, S., He, Q., Carass, A., Jog, A., Cuzzocreo, J.L., Reich, D.S., Prince, J.L., Pham, D.L., 2014b. Example based lesion segmentation. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2014), San Diego, CA, February 15\u201320, 2014, pp. 90341Y\u201390341Y\u20138.","DOI":"10.1117\/12.2043917"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib97","doi-asserted-by":"crossref","first-page":"1598","DOI":"10.1109\/JBHI.2015.2439242","article-title":"Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation","volume":"19","author":"Roy","year":"2015","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib98","series-title":"MRI Atlas of MS Lesions","author":"Sahraian","year":"2007"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib99","doi-asserted-by":"crossref","unstructured":"Sajja, B., Datta, S., He, R., Narayana, P., 2004. A unified approach for lesion segmentation on MRI of multiple sclerosis. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1778\u20131781.","DOI":"10.1109\/IEMBS.2004.1403532"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib100","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1007\/s10439-005-9009-0","article-title":"Unified approach for multiple sclerosis lesion segmentation on brain MRI","volume":"34","author":"Sajja","year":"2006","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib101","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1016\/j.media.2009.06.003","article-title":"Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms","volume":"13","author":"Schaap","year":"2009","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib102","doi-asserted-by":"crossref","first-page":"3774","DOI":"10.1016\/j.neuroimage.2011.11.032","article-title":"An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis","volume":"59","author":"Schmidt","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib103","doi-asserted-by":"crossref","first-page":"3385","DOI":"10.1002\/hbm.22409","article-title":"Reconstruction of the human cerebral cortex robust to white matter lesions","volume":"35","author":"Shiee","year":"2014","journal-title":"Human. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib104","doi-asserted-by":"crossref","first-page":"1524","DOI":"10.1016\/j.neuroimage.2009.09.005","article-title":"A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions","volume":"49","author":"Shiee","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib105","doi-asserted-by":"crossref","unstructured":"Styner, M., Lee, J., Chin, B., Chin, M.S., Commowick, O., Tran, H.H., Markovic-Plese, S., Jewells, V., Warfield, S., 2008. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008) 3D Segmentation in the Clinic: A Grand Challenge II, pp. 1\u20136.","DOI":"10.54294\/lmkqvm"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib106","doi-asserted-by":"crossref","unstructured":"Subbanna, N., Precup, D., Arnold, D.L., Arbel, T., 2015. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI. In: 24th Inf. Proceedings in Med. Imaging (IPMI 2015), Springer Berlin Heidelberg. pp. 514\u2013526.","DOI":"10.1007\/978-3-319-19992-4_40"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib107","doi-asserted-by":"crossref","first-page":"2079","DOI":"10.1109\/TMI.2015.2419072","article-title":"Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation","volume":"34","author":"Sudre","year":"2015","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib108","doi-asserted-by":"crossref","first-page":"68","DOI":"10.3174\/ajnr.A3172","article-title":"Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI","volume":"34","author":"Sweeney","year":"2013","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib109","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.nicl.2013.03.002","article-title":"OASIS is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in MRI","volume":"2","author":"Sweeney","year":"2013","journal-title":"NeuroImage: Clin."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib110","doi-asserted-by":"crossref","unstructured":"Ta, V.T., Giraud, R., Collins, D.L., Coup\u00e9, P., 2014. Optimized PatchMatch for near real time and accurate label fusion. In: Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014), Springer Berlin Heidelberg. pp. 105\u2013112.","DOI":"10.1007\/978-3-319-10443-0_14"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib111","doi-asserted-by":"crossref","unstructured":"Tomas-Fernandez, X., Warfield, S.K., 2011. A new classifier feature space for an improved multiple sclerosis lesion segmentation. In: Proceedings of the 8th International Symposium on Biomedical Imaging (ISBI 2011), pp. 1492\u20131495.","DOI":"10.1109\/ISBI.2011.5872683"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib112","doi-asserted-by":"crossref","unstructured":"Tomas-Fernandez, X., Warfield, S.K., 2012. Population intensity outliers or a new model for brain WM abnormalities. In: Proceedings of the 9th International Symposium on Biomedical Imaging (ISBI 2012), pp. 1543\u20131546.","DOI":"10.1109\/ISBI.2012.6235867"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib113","doi-asserted-by":"crossref","first-page":"1349","DOI":"10.1109\/TMI.2015.2393853","article-title":"A Model of Population and Subject (MOPS) intensities with application to multiple sclerosis lesion segmentation","volume":"34","author":"Tomas-Fernandez","year":"2015","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib114","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","article-title":"N4ITK","volume":"29","author":"Tustison","year":"2010","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib115","doi-asserted-by":"crossref","first-page":"598","DOI":"10.1109\/42.640750","article-title":"Multiple sclerosis lesion quantification using fuzzy-connectedness principles","volume":"16","author":"Udupa","year":"1997","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib116","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/j.media.2016.08.014","article-title":"Automated tissue segmentation of MR brain images in the presence of white matter lesions","volume":"35","author":"Valverde","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib117","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1109\/42.938237","article-title":"Automated segmentation of multiple sclerosis lesions by model outlier detection","volume":"20","author":"Van Leemput","year":"2001","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib118","doi-asserted-by":"crossref","first-page":"2458","DOI":"10.1007\/s00415-012-6762-5","article-title":"Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis","volume":"260","author":"Vrenken","year":"2013","journal-title":"J. Neurol."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib119","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/S1361-8415(00)00003-7","article-title":"Adaptive, template moderated, spatially varying statistical classification","volume":"4","author":"Warfield","year":"2000","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib120","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1109\/TMI.2004.828354","article-title":"Simultaneous Truth and Performance Level Estimation (STAPLE)","volume":"23","author":"Warfield","year":"2004","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib121","doi-asserted-by":"crossref","unstructured":"Weiss, N., Rueckert, D., Rao, A., 2013. Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Proceedings of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2013), Springer Berlin Heidelberg. pp. 735\u2013742.","DOI":"10.1007\/978-3-642-40811-3_92"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib122","doi-asserted-by":"crossref","unstructured":"Welti, D., Gerig, G., Rad\u00fc, E.W., Kappos, L., Sz\u00e9kely, G., 2001. Spatio-temporal segmentation of active multiple scleroris lesions in serial MRI data. In: 17th Inf. Proceedings in Med. Imaging (IPMI 2001), Springer Berlin Heidelberg. pp. 438\u2013445.","DOI":"10.1007\/3-540-45729-1_46"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib123","doi-asserted-by":"crossref","first-page":"80","DOI":"10.2307\/3001968","article-title":"Individual comparisons by ranking methods","volume":"1","author":"Wilcoxon","year":"1945","journal-title":"Biom. Bull."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib124","unstructured":"World Health Organization, 2008. Atlas: Multiple Sclerosis Resources in the World 2008. Springer, Geneva, Switzerland."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib125","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.1016\/j.neuroimage.2006.04.211","article-title":"Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI","volume":"32","author":"Wu","year":"2006","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib126","doi-asserted-by":"crossref","unstructured":"Xie, Y., Tao, X., 2011. White matter lesion segmentation using machine learning and weakly labeled MR images. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2011), Orlando, FL, February 12\u201317, 2011, pp. 79622G\u201379622G\u20139.","DOI":"10.1117\/12.878237"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib127","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.neuroimage.2005.09.054","article-title":"CLASSIC","volume":"30","author":"Xue","year":"2006","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.12.064_bib128","unstructured":"Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method arXiv:1212.5701."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib129","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/42.906424","article-title":"Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm","volume":"20","author":"Zhang","year":"2001","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2016.12.064_bib130","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1109\/42.363096","article-title":"Morphometric analysis of white matter lesions in MR images","volume":"13","author":"Zijdenbos","year":"1994","journal-title":"IEEE Trans. Med. Imag."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811916307819?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811916307819?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,21]],"date-time":"2022-07-21T06:56:30Z","timestamp":1658386590000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811916307819"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":130,"alternative-id":["S1053811916307819"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.neuroimage.2016.12.064","relation":{},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Longitudinal multiple sclerosis lesion segmentation: Resource and challenge","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2016.12.064","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}