iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.NEUNET.2023.01.006
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:27:17Z","timestamp":1726500437207},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.neunet.2023.01.006","type":"journal-article","created":{"date-parts":[[2023,1,14]],"date-time":"2023-01-14T15:52:02Z","timestamp":1673711522000},"page":"164-174","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Self-attention learning network for face super-resolution"],"prefix":"10.1016","volume":"160","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8592-053X","authenticated-orcid":false,"given":"Kangli","family":"Zeng","sequence":"first","affiliation":[]},{"given":"Zhongyuan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Tao","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Jianyu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jiaming","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zixiang","family":"Xiong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.neunet.2023.01.006_b1","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1109\/TPAMI.2002.1033210","article-title":"Limits on super-resolution and how to break them","volume":"24","author":"Baker","year":"2002","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2023.01.006_b2","first-page":"109","article-title":"Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs","volume":"Vol. 1","author":"Bulat","year":"2018"},{"key":"10.1016\/j.neunet.2023.01.006_b3","doi-asserted-by":"crossref","first-page":"1219","DOI":"10.1109\/TIP.2020.3043093","article-title":"Learning spatial attention for face super-resolution","volume":"30","author":"Chen","year":"2021","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2023.01.006_b4","doi-asserted-by":"crossref","unstructured":"Chen,\u00a0Y., Tai,\u00a0Y., Liu,\u00a0X., Shen,\u00a0C., & Yang,\u00a0J. (2018). FSRNet: End-to-End Learning Face Super-Resolution With Facial Priors. In CVPR (pp. 2492\u20132501).","DOI":"10.1109\/CVPR.2018.00264"},{"key":"10.1016\/j.neunet.2023.01.006_b5","doi-asserted-by":"crossref","unstructured":"Dai,\u00a0T., Cai,\u00a0J., Zhang,\u00a0Y., Xia,\u00a0S. -T., & Zhang,\u00a0L. (2019). Second-Order Attention Network for Single Image Super-Resolution. In CVPR (pp. 11065\u201311074).","DOI":"10.1109\/CVPR.2019.01132"},{"key":"10.1016\/j.neunet.2023.01.006_b6","doi-asserted-by":"crossref","unstructured":"Dong,\u00a0C., Loy,\u00a0C. C., He,\u00a0K., & Tang,\u00a0X. (2014). Learning a Deep Convolutional Network for Image Super-Resolution. In ECCV (pp. 184\u2013199).","DOI":"10.1007\/978-3-319-10593-2_13"},{"issue":"2","key":"10.1016\/j.neunet.2023.01.006_b7","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2016","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2023.01.006_b8","doi-asserted-by":"crossref","unstructured":"Dong,\u00a0C., Loy,\u00a0C. C., & Tang,\u00a0X. (2016). Accelerating the Super-Resolution Convolutional Neural Network. In ECCV (pp. 391\u2013407).","DOI":"10.1007\/978-3-319-46475-6_25"},{"key":"10.1016\/j.neunet.2023.01.006_b9","doi-asserted-by":"crossref","unstructured":"Fan,\u00a0Y., Shi,\u00a0H., Yu,\u00a0J., Liu,\u00a0D., Han,\u00a0W., Yu,\u00a0H., et al. (2017). Balanced Two-Stage Residual Networks for Image Super-Resolution. In CVPRW (pp. 1157\u20131164).","DOI":"10.1109\/CVPRW.2017.154"},{"issue":"6","key":"10.1016\/j.neunet.2023.01.006_b10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3272127.3275060","article-title":"Image super-resolution via deterministic-stochastic synthesis and local statistical rectification","volume":"37","author":"Ge","year":"2018","journal-title":"ACM Transactions on Graphics"},{"key":"10.1016\/j.neunet.2023.01.006_b11","doi-asserted-by":"crossref","unstructured":"Haris,\u00a0M., Shakhnarovich,\u00a0G., & Ukita,\u00a0N. (2018). Deep Back-Projection Networks for Super-Resolution. In CVPR (pp. 1664\u20131673).","DOI":"10.1109\/CVPR.2018.00179"},{"key":"10.1016\/j.neunet.2023.01.006_b12","series-title":"CVPR","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.neunet.2023.01.006_b13","doi-asserted-by":"crossref","unstructured":"Huang,\u00a0G., Liu,\u00a0Z., van\u00a0der Maaten,\u00a0L., & Weinberger,\u00a0K. Q. (2017). Densely Connected Convolutional Networks. In CVPR (pp. 2261\u20132269).","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.neunet.2023.01.006_b14","doi-asserted-by":"crossref","unstructured":"Hui,\u00a0Z., Wang,\u00a0X., & Gao,\u00a0X. (2018). Two-Stage Convolutional Network for Image Super-Resolution. In ICPR (pp. 2670\u20132675).","DOI":"10.1109\/ICPR.2018.8545648"},{"issue":"10","key":"10.1016\/j.neunet.2023.01.006_b15","doi-asserted-by":"crossref","first-page":"2734","DOI":"10.1109\/TMM.2019.2960586","article-title":"ATMFN: Adaptive-threshold-based multi-model fusion network for compressed face hallucination","volume":"22","author":"Jiang","year":"2020","journal-title":"IEEE Transactions on Multimedia"},{"key":"10.1016\/j.neunet.2023.01.006_b16","doi-asserted-by":"crossref","unstructured":"Karras,\u00a0T., Laine,\u00a0S., & Aila,\u00a0T. (2019). A Style-Based Generator Architecture for Generative Adversarial Networks. In CVPR (pp. 4401\u20134410).","DOI":"10.1109\/CVPR.2019.00453"},{"key":"10.1016\/j.neunet.2023.01.006_b17","unstructured":"Kim,\u00a0D., Kim,\u00a0M., Kwon,\u00a0G., & Kim,\u00a0D. (2019). Progressive Face Super-Resolution via Attention to Facial Landmark. In BMVC (p. 192)."},{"key":"10.1016\/j.neunet.2023.01.006_b18","doi-asserted-by":"crossref","unstructured":"Kim,\u00a0J., Lee,\u00a0J. K., & Lee,\u00a0K. M. (2016). Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In CVPR (pp. 1646\u20131654).","DOI":"10.1109\/CVPR.2016.182"},{"key":"10.1016\/j.neunet.2023.01.006_b19","doi-asserted-by":"crossref","unstructured":"Lai,\u00a0W. -S., Huang,\u00a0J. -B., Ahuja,\u00a0N., & Yang,\u00a0M. (2017). Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In CVPR (pp. 5835\u20135843).","DOI":"10.1109\/CVPR.2017.618"},{"key":"10.1016\/j.neunet.2023.01.006_b20","doi-asserted-by":"crossref","unstructured":"Ledig,\u00a0C., Theis,\u00a0L., Huszar,\u00a0F., Caballero,\u00a0J., Cunningham,\u00a0A., Acosta,\u00a0A., et al. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In CVPR (pp. 105\u2013114).","DOI":"10.1109\/CVPR.2017.19"},{"key":"10.1016\/j.neunet.2023.01.006_b21","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.neunet.2022.01.009","article-title":"Deep rival penalized competitive learning for low-resolution face recognition","volume":"148","author":"Li","year":"2022","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2023.01.006_b22","doi-asserted-by":"crossref","unstructured":"Li,\u00a0Z., Yang,\u00a0J., Liu,\u00a0Z., Yang,\u00a0X., Jeon,\u00a0G., & Wu,\u00a0W. (2019). Feedback Network for Image Super-Resolution. In CVPR (pp. 3867\u20133876).","DOI":"10.1109\/CVPR.2019.00399"},{"key":"10.1016\/j.neunet.2023.01.006_b23","doi-asserted-by":"crossref","unstructured":"Lim,\u00a0B., Son,\u00a0S., Kim,\u00a0H., Nah,\u00a0S., & Lee,\u00a0K. M. (2017). Enhanced Deep Residual Networks for Single Image Super-Resolution. In CVPRW (pp. 1132\u20131140).","DOI":"10.1109\/CVPRW.2017.151"},{"issue":"1","key":"10.1016\/j.neunet.2023.01.006_b24","first-page":"1","article-title":"Cross-SRN: Structure-preserving super-resolution network with cross convolution","volume":"1","author":"Liu","year":"2022","journal-title":"IEEE Transactions on Circuits and Systems for Video Technology"},{"key":"10.1016\/j.neunet.2023.01.006_b25","doi-asserted-by":"crossref","unstructured":"Liu,\u00a0Z., Luo,\u00a0P., Wang,\u00a0X., & Tang,\u00a0X. (2015). Deep Learning Face Attributes in the Wild. In ICCV (pp. 3730\u20133738).","DOI":"10.1109\/ICCV.2015.425"},{"key":"10.1016\/j.neunet.2023.01.006_b26","doi-asserted-by":"crossref","unstructured":"Lu,\u00a0T., Wang,\u00a0Y., Zhang,\u00a0Y., Wang,\u00a0Y., Liu,\u00a0W., Wang,\u00a0Z., et al. (2021). Face Hallucination via Split-Attention in Split-Attention Network. In ACM-MM (pp. 5501\u20135509).","DOI":"10.1145\/3474085.3475682"},{"key":"10.1016\/j.neunet.2023.01.006_b27","doi-asserted-by":"crossref","unstructured":"Ma,\u00a0C., Jiang,\u00a0Z., Rao,\u00a0Y., Lu,\u00a0J., & Zhou,\u00a0J. (2020). Deep Face Super-Resolution With Iterative Collaboration Between Attentive Recovery and Landmark Estimation. In CVPR (pp. 5568\u20135577).","DOI":"10.1109\/CVPR42600.2020.00561"},{"key":"10.1016\/j.neunet.2023.01.006_b28","doi-asserted-by":"crossref","unstructured":"Maeng,\u00a0H., Liao,\u00a0S., Kang,\u00a0D., Lee,\u00a0S. -W., & Jain,\u00a0A. K. (2012). Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching. In ACCV (pp. 708\u2013721).","DOI":"10.1007\/978-3-642-37444-9_55"},{"key":"10.1016\/j.neunet.2023.01.006_b29","doi-asserted-by":"crossref","unstructured":"Menon,\u00a0S., Damian,\u00a0A., Hu,\u00a0S., Ravi,\u00a0N., & Rudin,\u00a0C. (2020). PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. In CVPR (pp. 2434\u20132442).","DOI":"10.1109\/CVPR42600.2020.00251"},{"key":"10.1016\/j.neunet.2023.01.006_b30","doi-asserted-by":"crossref","unstructured":"Ronneberger,\u00a0O., Fischer,\u00a0P., & Brox,\u00a0T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In MICCAI (pp. 234\u2013241).","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"2","key":"10.1016\/j.neunet.2023.01.006_b31","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1109\/TIP.2005.859378","article-title":"Image information and visual quality","volume":"15","author":"Sheikh","year":"2006","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2023.01.006_b32","doi-asserted-by":"crossref","unstructured":"Song,\u00a0Y., Zhang,\u00a0J., He,\u00a0S., Bao,\u00a0L., & Yang,\u00a0Q. (2017). Learning to Hallucinate Face Images via Component Generation and Enhancement. In IJCAI (pp. 4537\u20134543).","DOI":"10.24963\/ijcai.2017\/633"},{"key":"10.1016\/j.neunet.2023.01.006_b33","doi-asserted-by":"crossref","unstructured":"Tai,\u00a0Y., Yang,\u00a0J., & Liu,\u00a0X. (2017). Image Super-Resolution via Deep Recursive Residual Network. In CVPR (pp. 2790\u20132798).","DOI":"10.1109\/CVPR.2017.298"},{"key":"10.1016\/j.neunet.2023.01.006_b34","doi-asserted-by":"crossref","unstructured":"Tai,\u00a0Y., Yang,\u00a0J., Liu,\u00a0X., & Xu,\u00a0C. (2017). MemNet: A Persistent Memory Network for Image Restoration. In ICCV (pp. 4549\u20134557).","DOI":"10.1109\/ICCV.2017.486"},{"key":"10.1016\/j.neunet.2023.01.006_b35","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.neunet.2022.06.009","article-title":"Image super-resolution with an enhanced group convolutional neural network","volume":"153","author":"Tian","year":"2022","journal-title":"Neural Networks"},{"issue":"3","key":"10.1016\/j.neunet.2023.01.006_b36","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1007\/s10278-007-9044-5","article-title":"Information entropy measure for evaluation of image quality","volume":"21","author":"Tsai","year":"2008","journal-title":"Journal of Digital Imaging"},{"issue":"4","key":"10.1016\/j.neunet.2023.01.006_b37","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: From error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2023.01.006_b38","doi-asserted-by":"crossref","unstructured":"Wang,\u00a0R., Du,\u00a0L., Yu,\u00a0Z., & Wan,\u00a0W. (2013). Infrared and visible images fusion using Compressed Sensing based on average gradient. In ICMEW (pp. 1\u20134).","DOI":"10.1109\/ICMEW.2013.6618257"},{"key":"10.1016\/j.neunet.2023.01.006_b39","doi-asserted-by":"crossref","unstructured":"Wang,\u00a0Y., Lu,\u00a0T., Xu,\u00a0R., & Zhang,\u00a0Y. (2020). Face Super-Resolution by Learning Multi-view Texture Compensation. In MMM (pp. 350\u2013360).","DOI":"10.1007\/978-3-030-37734-2_29"},{"key":"10.1016\/j.neunet.2023.01.006_b40","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.neunet.2021.06.005","article-title":"Enhanced image prior for unsupervised remoting sensing super-resolution","volume":"143","author":"Wang","year":"2021","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2023.01.006_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2019.107169","article-title":"Blind single image super-resolution with a mixture of deep networks","volume":"102","author":"Wang","year":"2020","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neunet.2023.01.006_b42","doi-asserted-by":"crossref","unstructured":"Wang,\u00a0X., Yu,\u00a0K., Wu,\u00a0S., Gu,\u00a0J., Liu,\u00a0Y., Dong,\u00a0C., et al. (2018). ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In ECCVW (pp. 63\u201379).","DOI":"10.1007\/978-3-030-11021-5_5"},{"key":"10.1016\/j.neunet.2023.01.006_b43","doi-asserted-by":"crossref","unstructured":"Wang,\u00a0C., Zhong,\u00a0Z., Jiang,\u00a0J., Zhai,\u00a0D., & Liu,\u00a0X. (2020). Parsing Map Guided Multi-Scale Attention Network For Face Hallucination. In ICASSP (pp. 2518\u20132522).","DOI":"10.1109\/ICASSP40776.2020.9053398"},{"issue":"2","key":"10.1016\/j.neunet.2023.01.006_b44","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1109\/TNNLS.2020.3028688","article-title":"Wavelet-based dual recursive network for image super-resolution","volume":"33","author":"Xin","year":"2022","journal-title":"IEEE Transactions on Neural Networks Learning Systems"},{"key":"10.1016\/j.neunet.2023.01.006_b45","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.neunet.2022.04.020","article-title":"Non-linear perceptual multi-scale network for single image super-resolution","volume":"152","author":"Yang","year":"2022","journal-title":"Neural Networks"},{"issue":"5","key":"10.1016\/j.neunet.2023.01.006_b46","first-page":"2264","article-title":"A progressive fusion generative adversarial network for realistic and consistent video super-resolution","volume":"44","author":"Yi","year":"2022","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2023.01.006_b47","doi-asserted-by":"crossref","unstructured":"Yu,\u00a0X., Fernando,\u00a0B., Ghanem,\u00a0B., Porikli,\u00a0F., & Hartley,\u00a0R. (2018). Face Super-Resolution Guided by Facial Component Heatmaps. In ECCV (pp. 219\u2013235).","DOI":"10.1007\/978-3-030-01240-3_14"},{"issue":"11","key":"10.1016\/j.neunet.2023.01.006_b48","first-page":"2926","article-title":"Semantic face hallucination: Super-resolving very low-resolution face images with supplementary attributes","volume":"42","author":"Yu","year":"2020","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2023.01.006_b49","doi-asserted-by":"crossref","unstructured":"Yu,\u00a0X., & Porikli,\u00a0F. (2017a). Face Hallucination with Tiny Unaligned Images by Transformative Discriminative Neural Networks. In AAAI (pp. 4327\u20134333).","DOI":"10.1609\/aaai.v31i1.11206"},{"key":"10.1016\/j.neunet.2023.01.006_b50","doi-asserted-by":"crossref","unstructured":"Yu,\u00a0X., & Porikli,\u00a0F. (2017b). Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders. In CVPR (pp. 5367\u20135375).","DOI":"10.1109\/CVPR.2017.570"},{"issue":"2","key":"10.1016\/j.neunet.2023.01.006_b51","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1109\/TBIOM.2021.3051268","article-title":"Semantic-driven face hallucination based on residual network","volume":"3","author":"Yu","year":"2021","journal-title":"IEEE Transactions on Biometrics, Behavior, and Identity Science"},{"key":"10.1016\/j.neunet.2023.01.006_b52","doi-asserted-by":"crossref","unstructured":"Zhang,\u00a0Y., Li,\u00a0K., Li,\u00a0K., Wang,\u00a0L., Zhong,\u00a0B., & Fu,\u00a0Y. (2018). Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In ECCV (pp. 294\u2013310).","DOI":"10.1007\/978-3-030-01234-2_18"},{"key":"10.1016\/j.neunet.2023.01.006_b53","doi-asserted-by":"crossref","unstructured":"Zhang,\u00a0Y., Tian,\u00a0Y., Kong,\u00a0Y., Zhong,\u00a0B., & Fu,\u00a0Y. (2018). Residual Dense Network for Image Super-Resolution. In CVPR (pp. 2472\u20132481).","DOI":"10.1109\/CVPR.2018.00262"},{"key":"10.1016\/j.neunet.2023.01.006_b54","doi-asserted-by":"crossref","unstructured":"Zhang,\u00a0K., Zhang,\u00a0Z., Cheng,\u00a0C. -W., Hsu,\u00a0W. H., Qiao,\u00a0Y., Liu,\u00a0W., et al. (2018). Super-Identity Convolutional Neural Network for Face Hallucination. In ECCV (pp. 196\u2013211).","DOI":"10.1007\/978-3-030-01252-6_12"},{"issue":"10","key":"10.1016\/j.neunet.2023.01.006_b55","doi-asserted-by":"crossref","first-page":"1499","DOI":"10.1109\/LSP.2016.2603342","article-title":"Joint face detection and alignment using multitask cascaded convolutional networks","volume":"23","author":"Zhang","year":"2016","journal-title":"IEEE Signal Processing Letters"},{"key":"10.1016\/j.neunet.2023.01.006_b56","doi-asserted-by":"crossref","unstructured":"Zhu,\u00a0S., Liu,\u00a0S., Loy,\u00a0C. C., & Tang,\u00a0X. (2016). Deep Cascaded Bi-Network for Face Hallucination. In ECCV (pp. 614\u2013630).","DOI":"10.1007\/978-3-319-46454-1_37"},{"key":"10.1016\/j.neunet.2023.01.006_b57","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.neunet.2022.04.026","article-title":"Multi-level landmark-guided deep network for face super-resolution","volume":"152","author":"Zhuang","year":"2022","journal-title":"Neural Networks"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608023000060?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608023000060?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,22]],"date-time":"2024-04-22T14:04:09Z","timestamp":1713794649000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608023000060"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":57,"alternative-id":["S0893608023000060"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2023.01.006","relation":{},"ISSN":["0893-6080"],"issn-type":[{"type":"print","value":"0893-6080"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Self-attention learning network for face super-resolution","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2023.01.006","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}