{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:32:45Z","timestamp":1726763565520},"reference-count":81,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.neucom.2023.126736","type":"journal-article","created":{"date-parts":[[2023,8,25]],"date-time":"2023-08-25T06:53:27Z","timestamp":1692946407000},"page":"126736","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Predicting cancer outcomes from whole slide images via hybrid supervision learning"],"prefix":"10.1016","volume":"557","author":[{"given":"Xianying","family":"He","sequence":"first","affiliation":[]},{"given":"Jiahui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Fang","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Linlin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Wen","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiaodi","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zhiqiang","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Duan","sequence":"additional","affiliation":[]},{"given":"Hongsheng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Shaoting","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neucom.2023.126736_b1","doi-asserted-by":"crossref","first-page":"e18","DOI":"10.1016\/S2589-7500(21)00211-9","article-title":"Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study","volume":"4","author":"Kers","year":"2022","journal-title":"Lancet Digit. Health"},{"key":"10.1016\/j.neucom.2023.126736_b2","article-title":"Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology","volume":"79","author":"Laleh","year":"2022","journal-title":"Med. Image Anal."},{"issue":"11","key":"10.1016\/j.neucom.2023.126736_b3","doi-asserted-by":"crossref","first-page":"e787","DOI":"10.1016\/S2589-7500(22)00168-6","article-title":"Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study","volume":"4","author":"Ding","year":"2022","journal-title":"Lancet Digit. Health"},{"issue":"11","key":"10.1016\/j.neucom.2023.126736_b4","doi-asserted-by":"crossref","first-page":"1673","DOI":"10.3390\/cancers11111673","article-title":"Artificial intelligence in lung cancer pathology image analysis","volume":"11","author":"Wang","year":"2019","journal-title":"Cancers"},{"key":"10.1016\/j.neucom.2023.126736_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102313","article-title":"ResGANet: Residual group attention network for medical image classification and segmentation","volume":"76","author":"Cheng","year":"2022","journal-title":"Med. Image Anal."},{"issue":"3","key":"10.1016\/j.neucom.2023.126736_b6","doi-asserted-by":"crossref","first-page":"034002","DOI":"10.1117\/1.JMI.6.3.034002","article-title":"Deep learning with mixed supervision for brain tumor segmentation","volume":"6","author":"Mlynarski","year":"2019","journal-title":"J. Med. Imaging"},{"key":"10.1016\/j.neucom.2023.126736_b7","doi-asserted-by":"crossref","unstructured":"Z. Li, C. Wang, M. Han, Y. Xue, W. Wei, L.-J. Li, L. Fei-Fei, Thoracic disease identification and localization with limited supervision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8290\u20138299.","DOI":"10.1109\/CVPR.2018.00865"},{"issue":"12","key":"10.1016\/j.neucom.2023.126736_b8","doi-asserted-by":"crossref","first-page":"3843","DOI":"10.1109\/TMI.2020.3006138","article-title":"Rectifying supporting regions with mixed and active supervision for rib fracture recognition","volume":"39","author":"Huang","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2023.126736_b9","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"309","article-title":"Hybrid supervision learning for pathology whole slide image classification","author":"Li","year":"2021"},{"key":"10.1016\/j.neucom.2023.126736_b10","series-title":"International MICCAI Brainlesion Workshop","first-page":"73","article-title":"Multimodal brain tumor segmentation and survival prediction using hybrid machine learning","author":"Pei","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b11","series-title":"2018 IEEE International Symposium on Circuits and Systems","first-page":"1","article-title":"Hybrid supervised deep learning for ethnicity classification using face images","author":"Heng","year":"2018"},{"key":"10.1016\/j.neucom.2023.126736_b12","doi-asserted-by":"crossref","unstructured":"T. Robert, N. Thome, M. Cord, Hybridnet: Classification and reconstruction cooperation for semi-supervised learning, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 153\u2013169.","DOI":"10.1007\/978-3-030-01234-2_10"},{"key":"10.1016\/j.neucom.2023.126736_b13","series-title":"Advances in Neural Information Processing Systems","first-page":"625","article-title":"Learning hybrid models for image annotation with partially labeled data","author":"He","year":"2009"},{"key":"10.1016\/j.neucom.2023.126736_b14","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"379","article-title":"MS-net: mixed-supervision fully-convolutional networks for full-resolution segmentation","author":"Shah","year":"2018"},{"key":"10.1016\/j.neucom.2023.126736_b15","series-title":"Annotation-cost minimization for medical image segmentation using suggestive mixed supervision fully convolutional networks","author":"Bhalgat","year":"2018"},{"key":"10.1016\/j.neucom.2023.126736_b16","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13\u201317, 2019, Proceedings, Part V","first-page":"556","article-title":"A mixed-supervision multilevel gan framework for image quality enhancement","author":"Upadhyay","year":"2019"},{"issue":"3","key":"10.1016\/j.neucom.2023.126736_b17","first-page":"639","article-title":"Mixed supervised object detection with robust objectness transfer","volume":"41","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2023.126736_b18","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"192","article-title":"Mixed-supervised dual-network for medical image segmentation","author":"Wang","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b19","doi-asserted-by":"crossref","unstructured":"L. Hou, D. Samaras, T.M. Kurc, Y. Gao, J.E. Davis, J.H. Saltz, Patch-based convolutional neural network for whole slide tissue image classification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2424\u20132433.","DOI":"10.1109\/CVPR.2016.266"},{"issue":"8","key":"10.1016\/j.neucom.2023.126736_b20","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1038\/s41591-019-0508-1","article-title":"Clinical-grade computational pathology using weakly supervised deep learning on whole slide images","volume":"25","author":"Campanella","year":"2019","journal-title":"Nat. Med."},{"issue":"1","key":"10.1016\/j.neucom.2023.126736_b21","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1109\/TMI.2015.2458702","article-title":"Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images","volume":"35","author":"Xu","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2023.126736_b22","series-title":"International Conference on Information Processing in Medical Imaging","first-page":"394","article-title":"Accurate nuclear segmentation with center vector encoding","author":"Li","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b23","series-title":"International Conference on Information Processing in Medical Imaging","first-page":"682","article-title":"Cia-net: Robust nuclei instance segmentation with contour-aware information aggregation","author":"Zhou","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b24","doi-asserted-by":"crossref","unstructured":"H. Chen, X. Qi, L. Yu, P.-A. Heng, DCAN: deep contour-aware networks for accurate gland segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2487\u20132496.","DOI":"10.1109\/CVPR.2016.273"},{"issue":"10","key":"10.1016\/j.neucom.2023.126736_b25","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1038\/s41591-018-0177-5","article-title":"Classification and mutation prediction from non\u2013small cell lung cancer histopathology images using deep learning","volume":"24","author":"Coudray","year":"2018","journal-title":"Nat. Med."},{"issue":"21","key":"10.1016\/j.neucom.2023.126736_b26","doi-asserted-by":"crossref","first-page":"e91","DOI":"10.1158\/0008-5472.CAN-17-0313","article-title":"Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis","volume":"77","author":"Cheng","year":"2017","journal-title":"Cancer Res."},{"issue":"1","key":"10.1016\/j.neucom.2023.126736_b27","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1109\/TMI.2019.2920608","article-title":"Integrative analysis of pathological images and multi-dimensional genomic data for early-stage cancer prognosis","volume":"39","author":"Shao","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"8 suppl 1","key":"10.1016\/j.neucom.2023.126736_b28","doi-asserted-by":"crossref","first-page":"S37","DOI":"10.1074\/mcp.RA118.001232","article-title":"Correlation analysis of histopathology and proteogenomics data for breast cancer","volume":"18","author":"Zhan","year":"2019","journal-title":"Mol. Cell. Proteom."},{"issue":"1","key":"10.1016\/j.neucom.2023.126736_b29","first-page":"10","article-title":"Prediction of gene mutation in lung cancer based on deep learning and histomorphology analysis","volume":"37","author":"Wang","year":"2020","journal-title":"Sheng Wu Yi Xue Gong Cheng Xue Za Zhi=J. Biomed. Eng.=Shengwu Yixue Gongchengxue Zazhi"},{"key":"10.1016\/j.neucom.2023.126736_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101547","article-title":"Learning to detect lymphocytes in immunohistochemistry with deep learning","volume":"58","author":"Swiderska-Chadaj","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2023.126736_b31","series-title":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","first-page":"851","article-title":"Computer-aided prognosis of er+ breast cancer histopathology and correlating survival outcome with oncotype DX assay","author":"Basavanhally","year":"2009"},{"key":"10.1016\/j.neucom.2023.126736_b32","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1200\/CCI.19.00108","article-title":"Generative adversarial domain adaptation for nucleus quantification in images of tissue immunohistochemically stained for Ki-67","volume":"4","author":"Zhang","year":"2020","journal-title":"JCO Clin. Cancer Inform."},{"key":"10.1016\/j.neucom.2023.126736_b33","series-title":"Predicting disease recurrence following trimodality therapy in non-small cell lung cancer using computed tomography derived radiomic features and clinico-pathologic features","author":"Madabhushi","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b34","series-title":"Context-aware convolutional neural network for grading of colorectal cancer histology images","author":"Shaban","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b35","series-title":"Pathologist-level grading of prostate biopsies with artificial intelligence","author":"Str\u00f6m","year":"2019"},{"issue":"1","key":"10.1016\/j.neucom.2023.126736_b36","first-page":"1","article-title":"Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer","volume":"2","author":"Nagpal","year":"2019","journal-title":"NPJ Digit. Med."},{"key":"10.1016\/j.neucom.2023.126736_b37","series-title":"A generalized deep learning framework for whole-slide image segmentation and analysis","author":"Khened","year":"2020"},{"key":"10.1016\/j.neucom.2023.126736_b38","series-title":"Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding","author":"Lu","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b39","series-title":"MICCAI Workshop on Computational Pathology","first-page":"170","article-title":"Multi-scale task multiple instance learning for the classification of digital pathology images with global annotations","author":"Marini","year":"2021"},{"issue":"6","key":"10.1016\/j.neucom.2023.126736_b40","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1038\/s41551-020-00682-w","article-title":"Data-efficient and weakly supervised computational pathology on whole-slide images","volume":"5","author":"Lu","year":"2021","journal-title":"Nat. Biomed. Eng."},{"key":"10.1016\/j.neucom.2023.126736_b41","doi-asserted-by":"crossref","unstructured":"S. Takahama, Y. Kurose, Y. Mukuta, H. Abe, M. Fukayama, A. Yoshizawa, M. Kitagawa, T. Harada, Multi-Stage Pathological Image Classification using Semantic Segmentation, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 10702\u201310711.","DOI":"10.1109\/ICCV.2019.01080"},{"key":"10.1016\/j.neucom.2023.126736_b42","series-title":"Streaming convolutional neural networks for end-to-end learning with multi-megapixel images","author":"Pinckaers","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b43","doi-asserted-by":"crossref","unstructured":"Y. Zhou, S. Graham, N. Alemi Koohbanani, M. Shaban, P.-A. Heng, N. Rajpoot, Cgc-net: Cell graph convolutional network for grading of colorectal cancer histology images, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019.","DOI":"10.1109\/ICCVW.2019.00050"},{"key":"10.1016\/j.neucom.2023.126736_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102183","article-title":"Joint fully convolutional and graph convolutional networks for weakly-supervised segmentation of pathology images","volume":"73","author":"Zhang","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2023.126736_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2020.103265","article-title":"Text mining-based construction site accident classification using hybrid supervised machine learning","volume":"118","author":"Cheng","year":"2020","journal-title":"Autom. Constr."},{"key":"10.1016\/j.neucom.2023.126736_b46","doi-asserted-by":"crossref","unstructured":"X. Zhao, S. Liang, Y. Wei, Pseudo mask augmented object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4061\u20134070.","DOI":"10.1109\/CVPR.2018.00427"},{"key":"10.1016\/j.neucom.2023.126736_b47","series-title":"Self-training with noisy student improves ImageNet classification","author":"Xie","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b48","series-title":"Interpretable and Annotation-Efficient Learning for Medical Image Computing","first-page":"193","article-title":"Semi-weakly supervised learning for prostate cancer image classification with teacher-student deep convolutional networks","author":"Ot\u00e1lora","year":"2020"},{"key":"10.1016\/j.neucom.2023.126736_b49","series-title":"International Conference on Information Processing in Medical Imaging","first-page":"842","article-title":"Signet ring cell detection with a semi-supervised learning framework","author":"Li","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b50","series-title":"2020 IEEE 17th International Symposium on Biomedical Imaging","first-page":"1364","article-title":"ErrorNet: Learning error representations from limited data to improve vascular segmentation","author":"Tajbakhsh","year":"2020"},{"key":"10.1016\/j.neucom.2023.126736_b51","doi-asserted-by":"crossref","unstructured":"C. Doersch, A. Zisserman, Multi-task self-supervised visual learning, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2051\u20132060.","DOI":"10.1109\/ICCV.2017.226"},{"key":"10.1016\/j.neucom.2023.126736_b52","series-title":"2019 18th IEEE International Conference on Machine Learning and Applications","first-page":"777","article-title":"Multi-adversarial variational autoencoder networks","author":"Terzopoulos","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b53","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"370","article-title":"Asdnet: Attention based semi-supervised deep networks for medical image segmentation","author":"Nie","year":"2018"},{"key":"10.1016\/j.neucom.2023.126736_b54","series-title":"NuClick: From clicks in the nuclei to nuclear boundaries","author":"Jahanifar","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b55","doi-asserted-by":"crossref","unstructured":"L. Castrejon, K. Kundu, R. Urtasun, S. Fidler, Annotating object instances with a polygon-rnn, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5230\u20135238.","DOI":"10.1109\/CVPR.2017.477"},{"key":"10.1016\/j.neucom.2023.126736_b56","doi-asserted-by":"crossref","unstructured":"H. Ling, J. Gao, A. Kar, W. Chen, S. Fidler, Fast interactive object annotation with curve-gcn, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5257\u20135266.","DOI":"10.1109\/CVPR.2019.00540"},{"key":"10.1016\/j.neucom.2023.126736_b57","series-title":"Interactive segmentation of medical images through fully convolutional neural networks","author":"Sakinis","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b58","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"384","article-title":"Models genesis: Generic autodidactic models for 3d medical image analysis","author":"Zhou","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b59","series-title":"Momentum contrast for unsupervised visual representation learning","author":"He","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b60","series-title":"A simple framework for contrastive learning of visual representations","author":"Chen","year":"2020"},{"key":"10.1016\/j.neucom.2023.126736_b61","series-title":"Data-efficient image recognition with contrastive predictive coding","author":"H\u00e9naff","year":"2019"},{"issue":"5","key":"10.1016\/j.neucom.2023.126736_b62","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TMI.2016.2535302","article-title":"Convolutional neural networks for medical image analysis: Full training or fine tuning?","volume":"35","author":"Tajbakhsh","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2023.126736_b63","series-title":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","first-page":"1251","article-title":"Surrogate supervision for medical image analysis: Effective deep learning from limited quantities of labeled data","author":"Tajbakhsh","year":"2019"},{"key":"10.1016\/j.neucom.2023.126736_b64","doi-asserted-by":"crossref","unstructured":"J. Li, Y. Wong, Q. Zhao, M.S. Kankanhalli, Learning to learn from noisy labeled data, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5051\u20135059.","DOI":"10.1109\/CVPR.2019.00519"},{"key":"10.1016\/j.neucom.2023.126736_b65","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.neucom.2023.126736_b66","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"issue":"2","key":"10.1016\/j.neucom.2023.126736_b67","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1109\/TMI.2018.2867350","article-title":"From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge","volume":"38","author":"Bandi","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2023.126736_b68","doi-asserted-by":"crossref","unstructured":"F. Yu, D. Wang, E. Shelhamer, T. Darrell, Deep layer aggregation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2403\u20132412.","DOI":"10.1109\/CVPR.2018.00255"},{"key":"10.1016\/j.neucom.2023.126736_b69","series-title":"NIPS-W","article-title":"Automatic differentiation in pytorch","author":"Paszke","year":"2017"},{"key":"10.1016\/j.neucom.2023.126736_b70","doi-asserted-by":"crossref","DOI":"10.4103\/2153-3539.119005","article-title":"OpenSlide: A vendor-neutral software foundation for digital pathology","volume":"4","author":"Goode","year":"2013","journal-title":"J. Pathol. Inform."},{"issue":"1","key":"10.1016\/j.neucom.2023.126736_b71","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TSMC.1979.4310076","article-title":"A threshold selection method from gray-level histograms","volume":"9","author":"Otsu","year":"1979","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.neucom.2023.126736_b72","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2023.3241204","article-title":"Bayesian collaborative learning for whole-slide image classification","author":"Yu","year":"2023","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"4","key":"10.1016\/j.neucom.2023.126736_b73","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2023.126736_b74","series-title":"Densenet: Implementing efficient convnet descriptor pyramids","author":"Iandola","year":"2014"},{"key":"10.1016\/j.neucom.2023.126736_b75","doi-asserted-by":"crossref","unstructured":"C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818\u20132826.","DOI":"10.1109\/CVPR.2016.308"},{"key":"10.1016\/j.neucom.2023.126736_b76","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.107885","article-title":"LCU-net: A novel low-cost U-net for environmental microorganism image segmentation","volume":"115","author":"Zhang","year":"2021","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.neucom.2023.126736_b77","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1007\/s10462-022-10192-7","article-title":"Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer","volume":"56","author":"Zhang","year":"2023","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.neucom.2023.126736_b78","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105265","article-title":"IL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach","volume":"143","author":"Chen","year":"2022","journal-title":"Comput. Biol. Med."},{"issue":"6","key":"10.1016\/j.neucom.2023.126736_b79","doi-asserted-by":"crossref","first-page":"4809","DOI":"10.1007\/s10462-021-10121-0","article-title":"A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches","volume":"55","author":"Li","year":"2022","journal-title":"Artif. Intell. Rev."},{"issue":"34","key":"10.1016\/j.neucom.2023.126736_b80","doi-asserted-by":"crossref","first-page":"51909","DOI":"10.1007\/s11356-022-18849-0","article-title":"A new pairwise deep learning feature for environmental microorganism image analysis","volume":"29","author":"Kulwa","year":"2022","journal-title":"Environ. Sci. Pollut. Res."},{"issue":"1","key":"10.1016\/j.neucom.2023.126736_b81","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.bbe.2021.12.010","article-title":"SVIA dataset: A new dataset of microscopic videos and images for computer-aided sperm analysis","volume":"42","author":"Chen","year":"2022","journal-title":"Biocybern. Biomed. Eng."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223008597?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223008597?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,29]],"date-time":"2023-09-29T01:49:57Z","timestamp":1695952197000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223008597"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":81,"alternative-id":["S0925231223008597"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.neucom.2023.126736","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Predicting cancer outcomes from whole slide images via hybrid supervision learning","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126736","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"126736"}}