iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.NEUCOM.2022.03.047
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T22:40:18Z","timestamp":1726872018591},"reference-count":67,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.neucom.2022.03.047","type":"journal-article","created":{"date-parts":[[2022,3,23]],"date-time":"2022-03-23T23:31:37Z","timestamp":1648078297000},"page":"91-103","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Adaptive one-pass passive-aggressive radial basis function for classification problems"],"prefix":"10.1016","volume":"491","author":[{"given":"Maedeh","family":"Kafiyan-Safari","sequence":"first","affiliation":[]},{"given":"Modjtaba","family":"Rouhani","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.03.047_b0005","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.patcog.2015.09.003","article-title":"One-pass online learning: A local approach","volume":"51","author":"Zhou","year":"2016","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neucom.2022.03.047_b0010","doi-asserted-by":"crossref","first-page":"4516","DOI":"10.1109\/TIP.2020.2973510","article-title":"One-pass multi-task networks with cross-task guided attention for brain tumor segmentation","volume":"29","author":"Zhou","year":"2020","journal-title":"IEEE Transactions on Image Processing"},{"issue":"8","key":"10.1016\/j.neucom.2022.03.047_b0015","doi-asserted-by":"crossref","first-page":"3561","DOI":"10.3390\/app11083561","article-title":"A comparison of time-series predictions for healthcare emergency department indicators and the impact of covid-19","volume":"11","author":"Duarte","year":"2021","journal-title":"Applied Sciences"},{"key":"10.1016\/j.neucom.2022.03.047_b0020","doi-asserted-by":"crossref","first-page":"1426","DOI":"10.1109\/TNNLS.2019.2920158","article-title":"Online incremental classification resonance network and its application to human\u2013robot interaction","volume":"31","author":"Park","year":"2019","journal-title":"IEEE transactions on neural networks and learning systems"},{"key":"10.1016\/j.neucom.2022.03.047_b0025","doi-asserted-by":"crossref","first-page":"1240","DOI":"10.1109\/LRA.2019.2894915","article-title":"Multi-view incremental segmentation of 3-d point clouds for mobile robots","volume":"4","author":"Chen","year":"2019","journal-title":"IEEE Robotics and Automation Letters"},{"key":"10.1016\/j.neucom.2022.03.047_b0030","unstructured":"J. Bruce, N. S\u00fcnderhauf, P. Mirowski, R. Hadsell, M. Milford, One-shot reinforcement learning for robot navigation with interactive replay, arXiv preprint arXiv:1711.10137."},{"key":"10.1016\/j.neucom.2022.03.047_b0035","unstructured":"A. Barua, D. Muthirayan, P.P. Khargonekar, M.A. Al Faruque, Hierarchical temporal memory based one-pass learning for real-time anomaly detection and simultaneous data prediction in smart grids, IEEE Transactions on Dependable and Secure Computing."},{"key":"10.1016\/j.neucom.2022.03.047_b0040","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0202937","article-title":"One-pass-throw-away learning for cybersecurity in streaming non-stationary environments by dynamic stratum network","volume":"13","author":"Thakong","year":"2018","journal-title":"PloS one"},{"key":"10.1016\/j.neucom.2022.03.047_b0045","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.patcog.2019.03.015","article-title":"One-pass person re-identification by sketch online discriminant analysis","volume":"93","author":"Li","year":"2019","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neucom.2022.03.047_b0050","doi-asserted-by":"crossref","unstructured":"S. Grossberg, How does a brain build a cognitive code, in: Studies of mind and brain, Boston Studies in the Philosophy of Science, Vol. 70, Springer, 1982, pp. 1\u201352.","DOI":"10.1007\/978-94-009-7758-7_1"},{"key":"10.1016\/j.neucom.2022.03.047_b0055","doi-asserted-by":"crossref","first-page":"2053","DOI":"10.1109\/TNN.2008.2003998","article-title":"Just-in-time adaptive classifiers\u2013part ii: Designing the classifier","volume":"19","author":"Alippi","year":"2008","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0060","doi-asserted-by":"crossref","unstructured":"Q.D. Nguyen, M. Milgram, Combining online and offline learning for tracking a talking face in video, in: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, IEEE, 2009, pp. 1401\u20131408.","DOI":"10.1109\/ICCVW.2009.5457448"},{"key":"10.1016\/j.neucom.2022.03.047_b0065","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.neucom.2011.12.001","article-title":"Meta-cognitive neural network for classification problems in a sequential learning framework","volume":"81","author":"Babu","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.03.047_b0070","first-page":"551","article-title":"Online passive-aggressive algorithms","volume":"7","author":"Crammer","year":"2006","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.03.047_b0075","doi-asserted-by":"crossref","first-page":"2284","DOI":"10.1109\/TSMCB.2004.834428","article-title":"An efficient sequential learning algorithm for growing and pruning rbf (gap-rbf) networks","volume":"34","author":"Huang","year":"2004","journal-title":"IEEE transactions on systems, man, and cybernetics"},{"key":"10.1016\/j.neucom.2022.03.047_b0080","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/s10462-016-9526-2","article-title":"A review of adaptive online learning for artificial neural networks","volume":"49","author":"P\u00e9rez-S\u00e1nchez","year":"2018","journal-title":"Artificial Intelligence Review"},{"key":"10.1016\/j.neucom.2022.03.047_b0085","unstructured":"S.C. Hoi, D. Sahoo, J. Lu, P. Zhao, Online learning: A comprehensive survey, arXiv preprint arXiv:1802.02871."},{"key":"10.1016\/j.neucom.2022.03.047_b0090","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1088\/0305-4470\/28\/3\/018","article-title":"Learning by online gradient descent","volume":"28","author":"Biehl","year":"1995","journal-title":"Journal of Physics A"},{"key":"10.1016\/j.neucom.2022.03.047_b0095","first-page":"1613","article-title":"Large scale online kernel learning, The","volume":"17","author":"Lu","year":"2016","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.03.047_b0100","first-page":"213","article-title":"A new approximate maximal margin classification algorithm","volume":"2","author":"Gentile","year":"2001","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.03.047_b0105","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1023\/A:1012435301888","article-title":"The relaxed online maximum margin algorithm","volume":"46","author":"Li","year":"2002","journal-title":"Machine Learning"},{"key":"10.1016\/j.neucom.2022.03.047_b0110","unstructured":"T. van Erven, W.M. Koolen, Metagrad: Multiple learning rates in online learning, in: Advances in Neural Information Processing Systems, NIPS, Barcelona, SPAIN, 2016 December 5\u201310, NIPS, pp. 3666\u20133674."},{"key":"10.1016\/j.neucom.2022.03.047_b0115","unstructured":"L. Zhang, S. Lu, Z.-H. Zhou, Adaptive online learning in dynamic environments, in: Advances in neural information processing systems, NIPS, Montr\u00e9al, Canada, 2018 December 3\u20138, NIPS, pp. 1323\u20131333."},{"key":"10.1016\/j.neucom.2022.03.047_b0120","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.patcog.2016.01.016","article-title":"Incremental p-margin algorithm for classification with arbitrary norm","volume":"55","author":"Villela","year":"2016","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neucom.2022.03.047_b0125","doi-asserted-by":"crossref","unstructured":"M. Dredze, K. Crammer, F. Pereira, Confidence-weighted linear classification, in: Proceedings of the 25th international conference on Machine learning, ICML, 2008 July 5-9, New York, United States, ACM, pp. 264\u2013271.","DOI":"10.1145\/1390156.1390190"},{"key":"10.1016\/j.neucom.2022.03.047_b0130","unstructured":"J. Wang, P. Zhao, S.C. Hoi, Exact soft confidence-weighted learning, arXiv preprint arXiv:1206.4612."},{"key":"10.1016\/j.neucom.2022.03.047_b0135","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1007\/s10994-013-5327-x","article-title":"Adaptive regularization of weight vectors","volume":"91","author":"Crammer","year":"2013","journal-title":"Machine Learning"},{"key":"10.1016\/j.neucom.2022.03.047_b0140","doi-asserted-by":"crossref","unstructured":"M. Tan, Y. Yan, L. Wang, A. Van Den Hengel, I.W. Tsang, Q.J. Shi, Learning sparse confidence-weighted classifier on very high dimensional data, in: Conference on Artificial Intelligence, AAAI-16, Phoenix, Arizona USA, 2016 February 12\u201317, AAAI Press.","DOI":"10.1609\/aaai.v30i1.10281"},{"key":"10.1016\/j.neucom.2022.03.047_b0145","doi-asserted-by":"crossref","unstructured":"Y. Liu, Y. Yan, L. Chen, Y. Han, Y. Yang, Adaptive sparse confidence-weighted learning for online feature selection, in: Conference on Artificial Intelligence, AAAI-19, Hawaii, USA, 2019 January 27\u201330, Vol. 33, pp. 4408\u20134415.","DOI":"10.1609\/aaai.v33i01.33014408"},{"key":"10.1016\/j.neucom.2022.03.047_b0150","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/j.neucom.2019.07.031","article-title":"Detecting cyberattacks in industrial control systems using online learning algorithms","volume":"364","author":"Li","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.03.047_b0155","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2019.03.031","article-title":"A lossless online bayesian classifier","volume":"489","author":"Nguyen","year":"2019","journal-title":"Information Sciences"},{"key":"10.1016\/j.neucom.2022.03.047_b0160","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.patcog.2018.04.007","article-title":"Variational inference based bayes online classifiers with concept drift adaptation","volume":"81","author":"Nguyen","year":"2018","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neucom.2022.03.047_b0165","doi-asserted-by":"crossref","first-page":"1601","DOI":"10.1162\/neco.1997.9.7.1601","article-title":"Online learning in radial basis function networks","volume":"9","author":"Freeman","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.neucom.2022.03.047_b0170","doi-asserted-by":"crossref","first-page":"966","DOI":"10.1109\/TNN.2006.875982","article-title":"An incremental training method for the probabilistic rbf network","volume":"17","author":"Constantinopoulos","year":"2006","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0175","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1109\/TNN.2009.2037148","article-title":"A very fast neural learning for classification using only new incoming datum","volume":"21","author":"Jaiyen","year":"2010","journal-title":"IEEE transactions on neural networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0180","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.eswa.2016.07.002","article-title":"A fast learning method for streaming and randomly ordered multi-class data chunks by using one-pass-throw-away class-wise learning concept","volume":"63","author":"Junsawang","year":"2016","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.neucom.2022.03.047_b0185","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1109\/TNN.2004.836241","article-title":"A generalized growing and pruning rbf (ggap-rbf) neural network for function approximation","volume":"16","author":"Huang","year":"2005","journal-title":"IEEE transactions on neural networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0190","doi-asserted-by":"crossref","first-page":"3011","DOI":"10.1016\/j.neucom.2006.07.016","article-title":"Improved gap-rbf network for classification problems","volume":"70","author":"Zhang","year":"2007","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.03.047_b0195","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1109\/TNN.2009.2019270","article-title":"A growing and pruning method for radial basis function networks","volume":"20","author":"Bortman","year":"2009","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0200","doi-asserted-by":"crossref","first-page":"1003","DOI":"10.1016\/S0893-6080(03)00052-2","article-title":"A new algorithm for online structure and parameter adaptation of rbf networks","volume":"16","author":"Alexandridis","year":"2003","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0205","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.neucom.2006.03.007","article-title":"Self-generation rbfns using evolutional pso learning","volume":"70","author":"Feng","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.03.047_b0210","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1016\/j.neunet.2011.04.006","article-title":"An efficient self-organizing rbf neural network for water quality prediction","volume":"24","author":"Han","year":"2011","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0215","doi-asserted-by":"crossref","first-page":"1793","DOI":"10.1109\/TNNLS.2013.2295813","article-title":"An incremental design of radial basis function networks","volume":"25","author":"Yu","year":"2014","journal-title":"IEEE transactions on neural networks and learning systems"},{"key":"10.1016\/j.neucom.2022.03.047_b0220","doi-asserted-by":"crossref","first-page":"3603","DOI":"10.1016\/j.asoc.2012.06.012","article-title":"A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system","volume":"12","author":"Subramanian","year":"2012","journal-title":"Applied soft computing"},{"key":"10.1016\/j.neucom.2022.03.047_b0225","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1007\/s12530-013-9102-9","article-title":"A meta-cognitive interval type-2 fuzzy inference system and its projection based learning algorithm","volume":"5","author":"Subramanian","year":"2014","journal-title":"Evolving Systems"},{"key":"10.1016\/j.neucom.2022.03.047_b0230","doi-asserted-by":"crossref","first-page":"2048","DOI":"10.1109\/TFUZZ.2015.2402683","article-title":"Recurrent classifier based on an incremental metacognitive-based scaffolding algorithm","volume":"23","author":"Pratama","year":"2015","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.neucom.2022.03.047_b0235","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.neucom.2015.06.022","article-title":"An incremental meta-cognitive-based scaffolding fuzzy neural network","volume":"171","author":"Pratama","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.03.047_b0240","doi-asserted-by":"crossref","unstructured":"M. Kafiyan, M. Rouhani, Soft meta-cognitive neural network for classification problems, in: 8th International Conference on Computer and Knowledge Engineering, ICCKE, Mashhad, IRAN, 2018 October 25\u201327, IEEE, 2018, pp. 262\u2013267.","DOI":"10.1109\/ICCKE.2018.8566359"},{"key":"10.1016\/j.neucom.2022.03.047_b0245","doi-asserted-by":"crossref","first-page":"654","DOI":"10.1016\/j.asoc.2012.08.047","article-title":"Meta-cognitive rbf network and its projection based learning algorithm for classification problems","volume":"13","author":"Babu","year":"2013","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.neucom.2022.03.047_b0250","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1007\/s12559-013-9223-2","article-title":"A meta-cognitive learning algorithm for an extreme learning machine classifier","volume":"6","author":"Savitha","year":"2014","journal-title":"Cognitive Computation"},{"key":"10.1016\/j.neucom.2022.03.047_b0255","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.neunet.2016.04.008","article-title":"Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification","volume":"80","author":"Mirza","year":"2016","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2022.03.047_b0260","doi-asserted-by":"crossref","first-page":"835","DOI":"10.1016\/j.neucom.2015.08.037","article-title":"Sequential active learning using meta-cognitive extreme learning machine","volume":"173","author":"Zhang","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.03.047_b0265","first-page":"339","article-title":"An incremental type-2 meta-cognitive extreme learning machine","author":"Pratama","year":"2016","journal-title":"IEEE transactions on cybernetics"},{"key":"10.1016\/j.neucom.2022.03.047_b0270","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1162\/NECO_a_00254","article-title":"Metacognitive learning in a fully complex-valued radial basis function neural network","volume":"24","author":"Savitha","year":"2012","journal-title":"Neural Computation"},{"key":"10.1016\/j.neucom.2022.03.047_b0275","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1109\/TNNLS.2019.2905643","article-title":"Metacognitive octonion-valued neural networks as they relate to time series analysis","volume":"31","author":"Saoud","year":"2019","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2022.03.047_b0280","doi-asserted-by":"crossref","first-page":"144823","DOI":"10.1109\/ACCESS.2020.3014690","article-title":"Metacognitive sedenion-valued neural network and its learning algorithm","volume":"8","author":"Saoud","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2022.03.047_b0285","doi-asserted-by":"crossref","first-page":"5438","DOI":"10.1109\/TIE.2011.2164773","article-title":"Advantages of radial basis function networks for dynamic system design","volume":"58","author":"Yu","year":"2011","journal-title":"IEEE Transactions on Industrial Electronics"},{"key":"10.1016\/j.neucom.2022.03.047_b0290","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.neucom.2016.11.010","article-title":"Self-organization of a recurrent rbf neural network using an information-oriented algorithm","volume":"225","author":"Han","year":"2017","journal-title":"Neurocomputing"},{"year":"1995","series-title":"Neural networks for pattern recognition","author":"Bishop","key":"10.1016\/j.neucom.2022.03.047_b0295"},{"key":"10.1016\/j.neucom.2022.03.047_b0300","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1016\/j.patcog.2006.07.009","article-title":"Kernel pca for novelty detection","volume":"40","author":"Hoffmann","year":"2007","journal-title":"Pattern recognition"},{"key":"10.1016\/j.neucom.2022.03.047_b0305","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.sigpro.2013.12.026","article-title":"A review of novelty detection","volume":"99","author":"Pimentel","year":"2014","journal-title":"Signal Processing"},{"key":"10.1016\/j.neucom.2022.03.047_b0310","unstructured":"A. Asuncion, D. Newman, Uci machine learning repository (2007)."},{"key":"10.1016\/j.neucom.2022.03.047_b0315","unstructured":"M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, in: International Conference on Machine Learning, ICML, 2003 August 21-24, Menlo Park, California, Washington D.C, AAAI Press, pp. 928\u2013936."},{"year":"2001","series-title":"Online ensemble learning","author":"Oza","key":"10.1016\/j.neucom.2022.03.047_b0320"},{"key":"10.1016\/j.neucom.2022.03.047_b0325","first-page":"495","article-title":"Libol: A library for online learning algorithms, The","volume":"15","author":"Hoi","year":"2014","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.03.047_b0330","first-page":"1601","article-title":"Moa: Massive online analysis","volume":"11","author":"Bifet","year":"2010","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.03.047_b0335","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.neunet.2011.10.003","article-title":"C-mantec: A novel constructive neural network algorithm incorporating competition between neurons","volume":"26","author":"Subirats","year":"2012","journal-title":"Neural Networks"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222003411?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222003411?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T22:14:01Z","timestamp":1726870441000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222003411"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":67,"alternative-id":["S0925231222003411"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.neucom.2022.03.047","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive one-pass passive-aggressive radial basis function for classification problems","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.03.047","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}